Flash carbon coating on active surfaces, methods of manufacture thereof and articles comprising the same

    公开(公告)号:US11476463B2

    公开(公告)日:2022-10-18

    申请号:US16987597

    申请日:2020-08-07

    Abstract: Disclosed herein is a method comprising mixing an electroactive particle with a carbonaceous material to form a particle mixture that comprises a carbon coated particle; subjecting the carbon coated particle to a pulsed voltage between parallel plate electrodes or between rolls of a roll mill; and converting the carbon coated particle to a graphite coated particle via localized Joule heating. Disclosed herein too is an apparatus comprising a mixing device that is operative to mix an electroactive particle with a carbonaceous material to form a particle mixture that comprises a carbon coated particle; and a device for applying a pulsed voltage to the particle mixture; where the applying of the pulsed voltage is conducted when the particle mixture is located between opposing plate electrodes or between opposing rolls of a roll mill; where the device for applying the pulsed voltage converts the carbon coated particle into a graphite coated particle.

    SELF-LITHIATING BATTERY CELLS AND METHODS FOR PRE-LITHIATING THE SAME

    公开(公告)号:US20220123279A1

    公开(公告)日:2022-04-21

    申请号:US17071118

    申请日:2020-10-15

    Abstract: Self-lithiating battery cells include an anode having a current collector, a host material applied to the current collector comprising graphite, silicon particles, and/or SiOx particles, wherein x is less than or equal to 2, and lithium foil in contact with the current collector. Methods for pre-lithiating battery cells include charging and discharging the battery cell to deplete the lithium foil by causing lithium ions to migrate from the lithium foil to the cathode and/or the anode. The methods can further include subsequently iteratively charging and discharging the battery while the depleted lithium foil remains within the battery cell. The lithium foil can be pure elemental lithium metal or a lithium magnesium alloy. The lithium foil can include 10 wt. % to 99 wt. % lithium and 1 wt. % to 90 wt. % magnesium. The anode current collector can include perforations.

    High strength aluminum alloy
    8.
    发明授权

    公开(公告)号:US11421310B2

    公开(公告)日:2022-08-23

    申请号:US16163141

    申请日:2018-10-17

    Abstract: A precipitation hardenable aluminum alloy is disclosed along with a precipitation hardened form of the aluminum alloy and a method of manufacturing an aluminum alloy article from the precipitation hardenable aluminum alloy. The disclosed precipitation hardenable aluminum alloy has a composition that includes, on a weight percent (wt %) basis, 8%-13% zinc, 1.5%-5% magnesium, 0%-5% copper, 0%-2% of zirconium, chromium, or zirconium and chromium in total, and the balance aluminum with no more than 0.5% impurities. The alloy composition is adaptable to a wide range of manufacturing processes including additive manufacturing. The composition of the aluminum alloy also enables the dispersion of strengthening precipitate phases selected from an η-phase precipitate, a θ-phase precipitate, and a T-phase precipitate, while being free of a S-phase precipitate, when precipitation hardened.

    ALUMINUM ALLOY POWDERS FOR POWDER BED FUSION ADDITIVE MANUFACTURING PROCESSES

    公开(公告)号:US20190291182A1

    公开(公告)日:2019-09-26

    申请号:US15934342

    申请日:2018-03-23

    Abstract: A three-dimensional aluminum alloy part may be manufactured by a process in which a layer of aluminum alloy powder feed material is distributed over a substrate and scanned with a high-energy laser or electron beam in selective regions corresponding to a cross-section of the aluminum alloy part being formed. During the manufacturing process, the selective regions may melt and form a pool of molten aluminum alloy material. Thereafter, the pool of molten aluminum alloy material may cool and solidify into a solid layer of fused aluminum alloy material. During solidification of the pool of molten aluminum alloy material, solid phase particles may form within a solution of liquid phase aluminum prior to formation of solid phase aluminum dendrites. The resulting aluminum alloy part may exhibit a polycrystalline structure that predominantly includes a plurality of equiaxed grains, instead of columnar grains.

Patent Agency Ranking