Abstract:
Systems and methods for increasing bandwidth for digital content delivery are presented. A content delivery method and system split a digitally encoded content file (e.g., song, television show, movie, podcast, or other audio or video content file) to be delivered to receivers into at least two files with a first file being stored at a receiver in advance of receiving the second file. The first file generally includes a majority of the information in the content file but is denatured and cannot be decoded by a receiver or media player to produce even a portion of the original content file without the second file. The second file includes information derived from the original content file that is not contained in the first file. Upon receiving the transmitted second file, a receiver combines and processes both files to recover the original content file wholly or substantially for playback.
Abstract:
Systems and methods are presented for transmitting additional data over preexisting differential COFDM signals by modulating existing data carriers with a phase and an amplitude offset. In exemplary embodiments of the present invention, additional data capacity can be achieved for an COFDM signal which is completely backwards compatible with existing satellite broadcast communications systems. In exemplary embodiments of the present invention additional information can be overlayed on an existing signal as a combination of amplitude and phase offset from the original QPSK symbols, applied for each information bit of the overlay data. With two additional levels of modulation, a receiver can demodulate the information from each of the previous stages and combine the information into a suitable format for soft decoding. The first stage of demodulation will be recovery of overlay data from the amplitude modulated D8PSK. Because other amplitude variations due to multi-path are also expected, the data gathered from the FFT in the receiver must be equalized to the channel conditions. After channel equalization has been performed, soft overlay data can then be derived from the distance off the unit circle. In order to recover the phase modulated overlay data, the equalized symbols must first be differentially demodulated and corrected for any common phase error offset. After common phase removal, overlay phase information can be obtained.