Abstract:
In techniques for category histogram image representation, image segments of an input image are generated and bounding boxes are selected that each represent a region of the input image, where each of the bounding boxes include image segments of the input image. A saliency map of the input image can also be generated. A bounding box is applied as a query on an images database to determine database image regions that match the region of the input image represented by the bounding box. The query can be augmented based on saliency detection of the input image region that is represented by the bounding box, and a query result is a ranked list of the database image regions. A category histogram for the region of the input image is then generated based on category labels of each of the database image regions that match the input image region.
Abstract:
A method and systems of enhancing a video using a related image are provided. One or more patches are identified in the video, with each patch identifying a region that is present in one of the frames of the video that can be mapped to a similar region in at least one other frame of the video. For each identified patch in the video, a best matching patch in the related image is found. The video is enhanced using the best matching patch in the related image for each identified patch in the video.
Abstract:
In embodiments of statistics of nearest neighbor fields, matching patches of a nearest neighbor field can be determined at image grid locations of a first digital image and a second digital image. A motion field can then be determined based on motion data of the matching patches. Predominant motion components of the motion field can be determined based on statistics of the motion data to generate a final motion field. The predominant motion components correspond to a motion of objects as represented by a displacement between the first and second digital images. One of the predominant motion components can then be assigned to each of the matching patches to optimize the final motion field of the matching patches.
Abstract:
Techniques for sharpening an image using local spatial adaptation and/or patch-based image processing. An image can be sharpened by creating a high-frequency image and then combining that high frequency image with the image. This process can be applied iteratively by using the output of one iteration, i.e., the sharpened image, as the input to the next iteration. Using local spatial adaptation and/or patch-based techniques can provide various advantages. How to change the intensity at a given position in the image can be calculated from more than just information about that same position in the input image and the blurred image. By using information about neighboring positions an improved high frequency image can be determined that, when combined with the input image, reduces ringing and halo artifacts, suppresses noise boosting, and/or generates results with sharper and cleaner edges and details.
Abstract:
In embodiments of optical flow with nearest neighbor field fusion, an initial motion field can be generated based on the apparent motion of objects between digital images, and the initial motion field accounts for small displacements of the object motion. Matching patches of a nearest neighbor field can also be determined for the digital images, where patches of an initial size are compared to determine the matching patches, and the nearest neighbor field accounts for large displacements of the object motion. Additionally, region patch matches can be compared and determined between the digital images, where the region patches are larger than the initial size matching patches. Optimal pixel assignments can then be determined for a fused image representation of the digital images, where the optimal pixel assignments are determined from the initial motion field, the matching patches, and the region patch matches.
Abstract:
Cropping boundary simplicity techniques are described. In one or more implementations, multiple candidate croppings of a scene are generated. For each of the candidate croppings, a score is calculated that is indicative of a boundary simplicity for the candidate cropping. To calculate the boundary simplicity, complexity of the scene along a boundary of a respective candidate cropping is measured. The complexity is measured, for instance, using an average gradient, an image edge map, or entropy along the boundary. Values indicative of the complexity may be derived from the measuring. The candidate croppings may then be ranked according to those values. Based on the scores calculated to indicate the boundary simplicity, one or more of the candidate croppings may be chosen e.g., to present the chosen croppings to a user for selection.
Abstract:
A system and method of text detection in an image are described. A component detection module applies a filter having a stroke width constraint and a stroke color constraint to an image to identify text stroke pixels in the image and to generate both a first map based on the stroke width constraint and a second map based on the stroke color constraint. A component filtering module has a first classifier and second classifier. The first classifier is applied to both the first map and the second map to generate a third map identifying a component of a text in the image. The second classifier is applied to the third map to generate a fourth map identifying a text line of the text in the image. A text region locator module thresholds the fourth map to identify text regions in the image.
Abstract:
In techniques for adaptive denoising with internal and external patches, example image patches taken from example images are grouped into partitions of similar patches, and a partition center patch is determined for each of the partitions. An image denoising technique is applied to image patches of a noisy image to generate modified image patches, and a closest partition center patch to each of the modified image patches is determined. The image patches of the noisy image are then classified as either a common patch or a complex patch of the noisy image, where an image patch is classified based on a distance between the corresponding modified image patch and the closest partition center patch. A denoising operator can be applied to an image patch based on the classification, such as applying respective denoising operators to denoise the image patches that are classified as the common patches of the noisy image.
Abstract:
In an example embodiment, for each of the image exemplars, a first location offset between an actual landmark location for a first landmark in the image exemplar and a predicted landmark location for the first landmark in the image exemplar is determined. Then, a probability that the image recognition process applied using the first feature produces an accurate identification of the first landmark in the image exemplars is determined based on the first location offsets for each of the image exemplars. A weight may then be assigned to the first feature based on the derived probability. An image recognition process may then be performed on an image, the image recognition process utilizing a voting process, for each of one or more features, for one or more landmarks in the plurality of image exemplars, the voting process for the first feature weighted according to the weight assigned to the first feature.
Abstract:
A system is configured to annotate an image with tags. As configured, the system accesses an image and generates a set of vectors for the image. The set of vectors may be generated by mathematically transforming the image, such as by applying a mathematical transform to predetermined regions of the image. The system may then query a database of tagged images by submitting the set of vectors as search criteria to a search engine. The querying of the database may obtain a set of tagged images. Next, the system may rank the obtained set of tagged images according to similarity scores that quantify degrees of similarity between the image and each tagged image obtained. Tags from a top-ranked subset of the tagged images may be extracted by the system, which may then annotate the image with these extracted tags.