Category histogram image representation
    181.
    发明授权
    Category histogram image representation 有权
    类别直方图图像表示

    公开(公告)号:US09213919B2

    公开(公告)日:2015-12-15

    申请号:US14180305

    申请日:2014-02-13

    CPC classification number: G06K9/6212 G06K9/00664 G06K9/4642 G06K2009/6213

    Abstract: In techniques for category histogram image representation, image segments of an input image are generated and bounding boxes are selected that each represent a region of the input image, where each of the bounding boxes include image segments of the input image. A saliency map of the input image can also be generated. A bounding box is applied as a query on an images database to determine database image regions that match the region of the input image represented by the bounding box. The query can be augmented based on saliency detection of the input image region that is represented by the bounding box, and a query result is a ranked list of the database image regions. A category histogram for the region of the input image is then generated based on category labels of each of the database image regions that match the input image region.

    Abstract translation: 在类别直方图图像表示的技术中,生成输入图像的图像片段,并且选择每个表示输入图像的区域的边界框,其中每个边界框包括输入图像的图像片段。 也可以生成输入图像的显着图。 将边框应用于图像数据库上的查询,以确定与由边界框表示的输入图像的区域匹配的数据库图像区域。 可以基于由边界框表示的输入图像区域的显着性检测来增加查询,并且查询结果是数据库图像区域的排序列表。 然后基于与输入图像区域匹配的每个数据库图像区域的类别标签来生成输入图像的区域的类别直方图。

    Video enhancement using related content
    182.
    发明授权
    Video enhancement using related content 有权
    视频增强使用相关内容

    公开(公告)号:US09196021B2

    公开(公告)日:2015-11-24

    申请号:US13904947

    申请日:2013-05-29

    CPC classification number: G06T5/005 G06T5/002 G06T2207/10016 G06T2207/20072

    Abstract: A method and systems of enhancing a video using a related image are provided. One or more patches are identified in the video, with each patch identifying a region that is present in one of the frames of the video that can be mapped to a similar region in at least one other frame of the video. For each identified patch in the video, a best matching patch in the related image is found. The video is enhanced using the best matching patch in the related image for each identified patch in the video.

    Abstract translation: 提供了使用相关图像来增强视频的方法和系统。 在视频中识别一个或多个补丁,其中每个补丁标识存在于视频的一个帧中的区域,该区域可以被映射到视频的至少一个其他帧中的类似区域。 对于视频中的每个识别的补丁,找到相关图像中的最佳匹配补丁。 使用视频中每个已识别的补丁的相关图像中的最佳匹配补丁来增强视频。

    Statistics of nearest neighbor fields
    183.
    发明授权
    Statistics of nearest neighbor fields 有权
    最近邻域的统计

    公开(公告)号:US09165373B2

    公开(公告)日:2015-10-20

    申请号:US13794219

    申请日:2013-03-11

    CPC classification number: G06T7/2013 G06T7/215 G06T7/223 G06T7/248

    Abstract: In embodiments of statistics of nearest neighbor fields, matching patches of a nearest neighbor field can be determined at image grid locations of a first digital image and a second digital image. A motion field can then be determined based on motion data of the matching patches. Predominant motion components of the motion field can be determined based on statistics of the motion data to generate a final motion field. The predominant motion components correspond to a motion of objects as represented by a displacement between the first and second digital images. One of the predominant motion components can then be assigned to each of the matching patches to optimize the final motion field of the matching patches.

    Abstract translation: 在最近邻域的统计的实施例中,可以在第一数字图像和第二数字图像的图像网格位置处确定最近邻域的匹配块。 然后可以基于匹配补丁的运动数据来确定运动场。 可以基于运动数据的统计来确定运动场的主要运动分量以产生最终运动场。 主要运动分量对应于由第一和第二数字图像之间的位移表示的物体的运动。 然后可以将主要运动分量中的一个分配给每个匹配补丁以优化匹配补丁的最终运动场。

    Patch-based, locally content-adaptive image and video sharpening
    184.
    发明授权
    Patch-based, locally content-adaptive image and video sharpening 有权
    基于补丁,本地内容自适应图像和视频锐化

    公开(公告)号:US09142009B2

    公开(公告)日:2015-09-22

    申请号:US13954112

    申请日:2013-07-30

    Inventor: Zhe Lin

    Abstract: Techniques for sharpening an image using local spatial adaptation and/or patch-based image processing. An image can be sharpened by creating a high-frequency image and then combining that high frequency image with the image. This process can be applied iteratively by using the output of one iteration, i.e., the sharpened image, as the input to the next iteration. Using local spatial adaptation and/or patch-based techniques can provide various advantages. How to change the intensity at a given position in the image can be calculated from more than just information about that same position in the input image and the blurred image. By using information about neighboring positions an improved high frequency image can be determined that, when combined with the input image, reduces ringing and halo artifacts, suppresses noise boosting, and/or generates results with sharper and cleaner edges and details.

    Abstract translation: 使用局部空间适应和/或基于补丁的图像处理锐化图像的技术。 通过创建高频图像,然后将高频图像与图像组合,可以对图像进行锐化。 该过程可以通过使用一次迭代的输出(即,锐化的图像)作为下一次迭代的输入来迭代地应用。 使用局部空间适应和/或补丁技术可以提供各种优点。 如何改变图像中给定位置的强度可以从不仅仅是关于输入图像和模糊图像中相同位置的信息来计算。 通过使用关于相邻位置的信息,可以确定改进的高频图像,当与输入图像组合时,减少振铃和晕圈伪影,抑制噪声增强,和/或产生具有更清晰和更清晰的边缘和细节的结果。

    Optical flow with nearest neighbor field fusion
    185.
    发明授权
    Optical flow with nearest neighbor field fusion 有权
    具有最近邻场融合的光流

    公开(公告)号:US09129399B2

    公开(公告)日:2015-09-08

    申请号:US13794300

    申请日:2013-03-11

    Abstract: In embodiments of optical flow with nearest neighbor field fusion, an initial motion field can be generated based on the apparent motion of objects between digital images, and the initial motion field accounts for small displacements of the object motion. Matching patches of a nearest neighbor field can also be determined for the digital images, where patches of an initial size are compared to determine the matching patches, and the nearest neighbor field accounts for large displacements of the object motion. Additionally, region patch matches can be compared and determined between the digital images, where the region patches are larger than the initial size matching patches. Optimal pixel assignments can then be determined for a fused image representation of the digital images, where the optimal pixel assignments are determined from the initial motion field, the matching patches, and the region patch matches.

    Abstract translation: 在具有最近邻场融合的光流的实施例中,可以基于数字图像之间的物体的明显运动来生成初始运动场,并且初始运动场考虑到物体运动的小位移。 还可以为数字图像确定最近邻域的匹配补丁,其中比较初始大小的补丁以确定匹配补丁,并且最近邻域考虑对象运动的大位移。 另外,可以在数字图像之间比较和确定区域补丁匹配,其中区域补丁大于初始大小匹配补丁。 然后可以确定数字图像的融合图像表示的最佳像素分配,其中从初始运动场,匹配补丁和区域补丁匹配确定最佳像素分配。

    Cropping Boundary Simplicity
    186.
    发明申请
    Cropping Boundary Simplicity 有权
    作物边界简单

    公开(公告)号:US20150213612A1

    公开(公告)日:2015-07-30

    申请号:US14169025

    申请日:2014-01-30

    Abstract: Cropping boundary simplicity techniques are described. In one or more implementations, multiple candidate croppings of a scene are generated. For each of the candidate croppings, a score is calculated that is indicative of a boundary simplicity for the candidate cropping. To calculate the boundary simplicity, complexity of the scene along a boundary of a respective candidate cropping is measured. The complexity is measured, for instance, using an average gradient, an image edge map, or entropy along the boundary. Values indicative of the complexity may be derived from the measuring. The candidate croppings may then be ranked according to those values. Based on the scores calculated to indicate the boundary simplicity, one or more of the candidate croppings may be chosen e.g., to present the chosen croppings to a user for selection.

    Abstract translation: 描述边界简单技术。 在一个或多个实现中,生成场景的多个候选裁剪。 对于每个候选作物,计算表示候选种植的边界简单性的分数。 为了计算边界简单性,测量沿着相应候选剪切的边界的场景的复杂性。 测量复杂度,例如,使用沿着边界的平均梯度,图像边缘图或熵。 表示复杂性的值可以从测量得出。 然后可以根据这些值对候选作物进行排序。 基于计算的用于指示边界简单性的分数,可以选择一个或多个候选剪切,以将所选择的剪切呈现给用户进行选择。

    Text detection in natural images
    187.
    发明授权
    Text detection in natural images 有权
    自然图像中的文本检测

    公开(公告)号:US09076056B2

    公开(公告)日:2015-07-07

    申请号:US13970993

    申请日:2013-08-20

    CPC classification number: G06K9/18 G06K9/3258

    Abstract: A system and method of text detection in an image are described. A component detection module applies a filter having a stroke width constraint and a stroke color constraint to an image to identify text stroke pixels in the image and to generate both a first map based on the stroke width constraint and a second map based on the stroke color constraint. A component filtering module has a first classifier and second classifier. The first classifier is applied to both the first map and the second map to generate a third map identifying a component of a text in the image. The second classifier is applied to the third map to generate a fourth map identifying a text line of the text in the image. A text region locator module thresholds the fourth map to identify text regions in the image.

    Abstract translation: 描述图像中文本检测的系统和方法。 分量检测模块将具有笔划宽度约束和笔画颜色约束的滤波器应用于图像以识别图像中的文本笔划像素,并且基于笔画宽度约束生成第一地图,并且基于笔画颜色生成第二地图 约束。 组件过滤模块具有第一分类器和第二分类器。 将第一分类器应用于第一地图和第二地图,以生成标识图像中的文本的分量的第三映射。 将第二分类器应用于第三图,以生成标识图像中的文本的文本行的第四图。 文本区域定位器模块阈值第四个映射以识别图像中的文本区域。

    ADAPTIVE DENOISING WITH INTERNAL AND EXTERNAL PATCHES
    188.
    发明申请
    ADAPTIVE DENOISING WITH INTERNAL AND EXTERNAL PATCHES 有权
    适用于内部和外部配线

    公开(公告)号:US20150131915A1

    公开(公告)日:2015-05-14

    申请号:US14080659

    申请日:2013-11-14

    Abstract: In techniques for adaptive denoising with internal and external patches, example image patches taken from example images are grouped into partitions of similar patches, and a partition center patch is determined for each of the partitions. An image denoising technique is applied to image patches of a noisy image to generate modified image patches, and a closest partition center patch to each of the modified image patches is determined. The image patches of the noisy image are then classified as either a common patch or a complex patch of the noisy image, where an image patch is classified based on a distance between the corresponding modified image patch and the closest partition center patch. A denoising operator can be applied to an image patch based on the classification, such as applying respective denoising operators to denoise the image patches that are classified as the common patches of the noisy image.

    Abstract translation: 在使用内部和外部补丁进行自适应去噪的技术中,从示例图像获取的示例图像修补程序分组到类似修补程序的分区中,并为每个分区确定分区中心修补程序。 将图像去噪技术应用于噪声图像的图像补丁以产生修改后的图像斑块,并确定每个修改后的图像斑块的最接近的分割中心斑块。 然后,噪声图像的图像块被分类为噪声图像的公共补丁或复杂补丁,其中基于对应的修改的图像补丁和最接近的分割中心补丁之间的距离对图像补丁进行分类。 可以基于分类将去噪算子应用于图像补片,例如应用相应的去噪算子去除被分类为噪声图像的公共斑块的图像斑块。

    EXEMPLAR-BASED FEATURE WEIGHTING
    189.
    发明申请
    EXEMPLAR-BASED FEATURE WEIGHTING 有权
    基于EXEMPLAR的特征加权

    公开(公告)号:US20150131873A1

    公开(公告)日:2015-05-14

    申请号:US14080010

    申请日:2013-11-14

    Abstract: In an example embodiment, for each of the image exemplars, a first location offset between an actual landmark location for a first landmark in the image exemplar and a predicted landmark location for the first landmark in the image exemplar is determined. Then, a probability that the image recognition process applied using the first feature produces an accurate identification of the first landmark in the image exemplars is determined based on the first location offsets for each of the image exemplars. A weight may then be assigned to the first feature based on the derived probability. An image recognition process may then be performed on an image, the image recognition process utilizing a voting process, for each of one or more features, for one or more landmarks in the plurality of image exemplars, the voting process for the first feature weighted according to the weight assigned to the first feature.

    Abstract translation: 在示例实施例中,对于每个图像样本,确定在图像样本中的第一地标的实际地标位置与图像样本中的第一地标的预测地标位置之间的第一位置偏移。 然后,基于每个图像样本的第一位置偏移来确定使用第一特征应用的图像识别处理产生图像样本中的第一地标的精确识别的概率。 然后可以基于导出的概率将权重分配给第一特征。 然后可以对图像执行图像识别处理,对于多个图像样本中的一个或多个地标,针对一个或多个特征中的每一个利用投票处理的图像识别处理,对第一特征的投票处理根据 分配给第一个特征的权重。

    IMAGE TAGGING
    190.
    发明申请
    IMAGE TAGGING 有权
    图像标记

    公开(公告)号:US20150120760A1

    公开(公告)日:2015-04-30

    申请号:US14068238

    申请日:2013-10-31

    CPC classification number: G06F17/30265 G06K9/6263 G06K2209/27

    Abstract: A system is configured to annotate an image with tags. As configured, the system accesses an image and generates a set of vectors for the image. The set of vectors may be generated by mathematically transforming the image, such as by applying a mathematical transform to predetermined regions of the image. The system may then query a database of tagged images by submitting the set of vectors as search criteria to a search engine. The querying of the database may obtain a set of tagged images. Next, the system may rank the obtained set of tagged images according to similarity scores that quantify degrees of similarity between the image and each tagged image obtained. Tags from a top-ranked subset of the tagged images may be extracted by the system, which may then annotate the image with these extracted tags.

    Abstract translation: 系统配置为使用标签注释图像。 如所配置的,系统访问图像并生成图像的一组向量。 可以通过数学变换图像来生成向量集合,例如通过对图像的预定区域应用数学变换。 然后,系统可以通过将搜索标准的向量集合提交给搜索引擎来查询标记图像的数据库。 数据库的查询可以获得一组标记的图像。 接下来,系统可以根据量化图像和所获得的每个标记图像之间的相似度的相似度分数来对获得的标记图像集进行排序。 来自标记图像的顶级子集的标签可以由系统提取,然后系统可以利用这些提取的标签来注释图像。

Patent Agency Ranking