Abstract:
A method, system, and apparatus for monitoring electrical safety conditions and managing energy consumption using a microcontroller embedded in a circuit breaker. The microcontroller receives a plurality of inputs detected by a plurality of sensors in the circuit breaker. An amount of energy consumed during a preset interval of time is determined. A temperature of a circuit breaker panel board detected by a temperature sensor is received and compared with a preset temperature alarm threshold value to determine a panel board overheating condition. A condition of the neutral conductor is determined based on a plurality of line voltages and currents received from a plurality of voltage and current sensors by comparing a voltage differential with a preset threshold differential voltage value. A plurality of data values derived from the plurality of sensor inputs and indicative of electrical safety conditions and energy consumption is transmitted via a secure communications link to a data processing system for translation, storage, and presentation to an energy consumer.
Abstract:
A system for depressurizing and cooling a high pressure, high temperature dense phase solids stream having coarse solid particles with entrained gas therein. In one aspect, the system has an apparatus for at least partially depressurizing and cooling the high pressure, high temperature dense phase solids stream having gas entrained therein and a pressure letdown device for further depressurization and separating cooled coarse solid particles from a portion of the entrained gas, resulting in a lower temperature, lower pressure outlet of solid particles for downstream processing or discharge to a storage silo for future use and/or disposal. There are no moving parts in the flow path of the solids stream in the system.
Abstract:
Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO2, which is then released as a nearly pure CO2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25° F., but also increases the CO2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.
Abstract:
Disclosed are various embodiments for communicating with an integrated distribution management system (IDMS). An IDMS often employs a communications protocol that is incompatible with a service oriented architecture. Accordingly, embodiments of the disclosure can allow utility computing systems in a service oriented architecture or in a messaging based environment to communicate with an IDMS.
Abstract:
A method, system, and computer readable storage medium for open access transmission tariff management for a utility. The system includes a database for storing a plurality of data pertaining to providing transmission service to wholesale customers, and a computer processor coupled to the database and cooperative with a plurality of subsystems. A first subsystem determines a budget transmission billing rate. A second subsystem estimates revenue from wholesale customers. A third subsystem determines an updated budget transmission billing rate and an updated revenue projection. A fourth subsystem determines an actual transmission billing rate. A fifth subsystem analyzes a billed transmission rate on a periodic basis.
Abstract:
Disclosed are cooling and depressurization system equipment, arrangement and methods to cool solid particles from a coal gasifier operating at high temperature and pressure. Ash from the coal needs to be continuously withdrawn from a circulating fluidized bed gasifier to maintain the solids inventory in the gasifier. The system disclosed enables use of conventional materials of construction for heat transfer surfaces. The supports for the cooling surfaces are located on the lower temperature upper section of the primary cooler. The cooled solids along with the fluidizing gas exits the primary cooler to a secondary receiving vessel where the solids can be further cooled by conventional means. The fluidizing and entrained gas entering the secondary vessel is filtered and vented through a vent pressure control valve. The column of cooled solids in the secondary vessel is depressurized by a continuous depressurization system to low pressures which are sufficient for conveying the solids to silos for disposal. The system and methods proposed are equally applicable to many high temperature, high pressure processes that require cooling and depressurization of process solids.
Abstract:
A yoke assembly includes two support members that are connected to one another, both of which include respective first ends and second ends. The support members are spaced apart enough to fit over existing hardware on a T-adapter at a dead end. In proximity to the first end of the two support members, a connection member is connected to the support members for securing the yoke assembly to the T-adapter. The yoke assembly includes a pole connector, which is pivotably positioned in proximity to the second end of each support member, wherein the pole connector is positioned between the two support members and secured thereto by the second pin. A pole can be secured between the pole connector of the yoke assembly and the power pole, reducing stress on an insulator for removing/repairing the insulator.
Abstract:
Devices, systems, and methods improve particulate filtration. A particulate filtration system is implemented within a fossil fuel power plant combustion system. A gas containing particulates flows through the filtration system. The filtration system comprises a collection hopper for collecting the particulates. Within the collection hopper, a particulate trap, upper baffles, and lower baffles are provided to retain collected particulates in the hopper and, thereby, improve the filtration of particulates from the gas flow. The particulate trap can include two sets of variously oriented, interconnecting retaining members crossing the interior of the collection hopper.
Abstract:
The present invention provides systems and methods for organic particulate filtration. An organic particulate filtration system is implemented within a fossil fuel power plant combustion system. The filtration system comprises a gas flow, in which gas are entrained particulates. The filtration system has a collection hopper located proximate a precipitator collection area. Within the collection hopper, a particulate baffle is provided in a downward-angled orientation. The particulate baffle is enabled to trap particulate, such as organic particulate, in the collection hopper, thereby preventing particulate re-entrainment in the gas flow.
Abstract:
The various embodiments of the present invention relate generally to remediation of contaminants in the environment, and more specifically to improved chemistries, systems, and methods for in-situ immobilization of contaminants in various media. More particularly, an aspect of the present invention is directed to an in-situ method for immobilizing a contaminant in a medium, comprising: contacting a medium in-situ with a chemical reagent, the medium comprising a contaminant, wherein the contacting the medium in-situ with a chemical reagent does not involve physical mixing of the medium and the chemical reagent; and immobilizing at least a portion of the contaminant in the medium in-situ to yield an immobilized contaminant in the medium, wherein the immobilized contaminant in the medium is neither extracted from the medium nor degraded by the chemical reagent.