Abstract:
An embodiment of the present invention is a method for isolating conducting polymer precursors by contacting a non-basic heterocyclic nitrogen containing hydrocarbon stream having a boiling point of from 232° C. (450° F.) to 566° C. (1050° F.) with an effective amount of a treating agent selected from monohydroxyl alcohols having a density at 25° C. of less than 0.90 g/cm3 and mixtures thereof, at conditions effective to maintain the reactants in a liquid phase to produce a first stream enriched in non-basic heterocyclic nitrogen containing hydrocarbon compounds and a second treated stream having a decreased non-basic heterocyclic nitrogen content. Optionally, an effective amount of mineral acid may be added to the hydrocarbon stream to enhance the process.
Abstract translation:本发明的一个实施方案是通过使沸点为232℃(450°F)至566℃的非碱性杂环含氮烃物流接触来分离导电聚合物前体的方法(1050°F 。)有效量的选自在25℃下密度小于0.90g / cm 3的单羟基醇及其混合物的处理剂,在有效地将反应物保持在液相中以产生 富含非碱性杂环氮的烃化合物的第一流和具有降低的非碱性杂环氮含量的第二处理流。 任选地,可以将有效量的无机酸添加到烃流中以增强该方法。
Abstract:
The invention relates to a process for demetallating a petroleum stream by contacting a metals-containing petroleum feed in the presence of a base selected from Group IA and IIA hydroxides and carbonates and ammonium hydroxide and carbonates and mixtures thereof an oxygen containing gas and a phase transfer agent at a temperature of up to 180.degree. C. for a time sufficient to produce a treated petroleum feed having a decreased metals content. The invention provides a method for enhancing the value of petroleum feeds that traditionally have limited use in refineries due to their metals, e.g., Ni and V content.
Abstract:
The present invention provides for a method for decreasing the Conradson carbon content of petroleum streams by forming a mixture of the petroleum stream and an essentially aqueous electrolysis medium, and passing an electric current through the mixture at an anodic voltage and pH sufficient to produce a petroleum fraction having decreased Conradson carbon content. The anodic voltage is from +0.5 to +1.5V vs. SCE. Preferably the pH is acidic. The invention provides a method for enhancing the value of petroleum feeds that traditionally have limited use in refineries.
Abstract:
The invention relates to a catalyst for conversion of methanol, ethanol alone or in combination with n-propanol to isobutanol and the process for making and using the catalyst. The catalyst is a noble metal supported on at least a first phase of mixed oxide crystallites containing from about 60 to about 74 atomic % (on a metals basis only) zirconium, from about 21 to about 31 atomic % manganese and from about 5 to about 9 atomic % zinc, and less than about 1 atomic % alkali, a second phase of zirconium-doped hetaerolite particles containing from about 65 to about 69 atomic % manganese, from about 31 to about 35 atomic % zinc, from about 0.5 to about 5 atomic % zirconium, and optionally a trace atomic % of alkali, and a third phase containing from about 29 to about 55 atomic % manganese, from about 13 to about 55 atomic % zinc and from about 13 to about 35 atomic % zirconium. The first phase mixed oxide crystallites have a zirconium oxide-like structure have a particle size of at least about 40 .ANG. to about 100 .ANG., wherein the second phase particles have a particle size of about 200 .ANG. to greater than about 2000 .ANG., and the third phase has a particle size of about 1000 .ANG. to greater than 4000 .ANG..
Abstract:
The invention relates to a catalyst for conversion of methanol, ethanol alone or in combination with n-propanol to isobutanol. The catalyst is a noble metal supported on at least a first phase having poorly crystalline manganese and zinc doped zirconium oxide phase containing about 71 to about 91 atomic % zirconium, about 10 to about 16 atomic % manganese and about 4 to about 8 atomic % zinc and a second phase of irregularly shaped hetaerolite-like crystals containing about 65 to about 69 atomic % manganese, about 31 to about 35 atomic % zinc and zero to about 5 atomic % zirconium embedded in the first phase. The catalyst is useful in making isobutanol.
Abstract:
The present invention relates to a process for demetallating a petroleum stream by contacting a metals-containing petroleum feed in the presence of an aqueous base selected from Group IA and IIA hydroxides and carbonates and ammonium hydroxide and carbonate and mixtures thereof, an oxygen containing gas and a phase transfer agent at a temperature of up to 180.degree. C. for a time sufficient to produce a treated petroleum feed having a decreased metals content. The invention provides a method for enhancing the value of petroleum feeds that traditionally have limited use in refineries due to their metals, e.g., Ni and V content.
Abstract:
The present invention provides for a process for electrochemically decreasing the Conradson carbon number of petroleum streams by contacting a Conradson carbon containing petroleum stream and an aqueous electrolysis medium with a low hydrogen overpotential metal cathode at an electric current and pH sufficient to decrease the Conradson carbon of the petroleum stream. The cathode voltage is from 0 V to -3.0 V vs. SCE at a pH of from 7 to 14. The cathode material typically is stainless steel, chromium, copper and nickel.
Abstract:
The invention relates to a catalyst for conversion of methanol, ethanol alone or in combination with n-propanol to isobutanol and the process for making and using the catalyst. The catalyst is a noble metal supported on at least a first phase of mixed oxide crystallites containing from about 60 to about 74 atomic % (on a metals basis only) zirconium, from about 21 to about 31 atomic % manganese and from about 5 to about 9 atomic % zinc, and less than about 1 atomic % alkali, a second phase of zirconium-doped hetaerolite particles containing from about 65 to about 69 atomic % manganese, from about 31 to about 35 atomic % zinc, from about 0.5 to about 5 atomic % zirconium, and optionally a trace atomic % of alkali, and a third phase containing from about 29 to about 55 atomic % manganese, from about 13 to about 55 atomic % zinc and from about 13 to about 35 atomic % zirconium. The first phase mixed oxide crystallites have a zirconium oxide-like structure have a particle size of at least about 40 .ANG. to about 100 .ANG., wherein the second phase particles have a particle size of about 200 .ANG. to greater than about 2000 .ANG., and the third phase has a particle size of about 1000 .ANG. to greater than 4000 .ANG..
Abstract:
The invention is a method for demetallating petroleum streams by subjecting a hydrocarbon soluble metals-containing petroleum stream and an aqueous electrolysis medium to a sufficient anodic potential at a pH sufficient to produce a treated petroleum stream having a decreased metals content. The invention is useful for enhancing the value of petroleum streams that traditionally have limited use in refineries due to their content of metals, particularly Ni and V.