Abstract:
A circuit used with a differential amplifier to eliminate the effect of Early Voltage from voltage gain provided by the differential amplifier. With a differential amplifier utilizing PNP transistors which experience the lowest, and most undesirable Early Voltage, the circuitry includes a pair of transistors 400 and 402, each with a base connected to an input of the differential amplifier corresponding to a similar base connection of a respective one of transistors 100 and 102 of the differential amplifier, an emitter connected to a current source, and a collector connected to the collector of a respective one of NPN current sink transistors 306 and 308 connected at outputs of the differential amplifier. The circuitry for elimination of Early Voltage further includes components to assure the collector voltages of transistors 400 and 402 are equal and the collector voltages of transistors 102 and 400 are equal. In addition to circuitry for elimination of Early Voltage when PNP transistors 100 and 102 are used to provide the differential amplifier inputs, the circuitry may also be configured for use when NPN transistors provide inputs for a differential amplifier.
Abstract:
The input capacitance of a differential amplifier is reduced by connecting a positive feedback path between the collector of each input transistor and a terminal of a resistor connected in the other parallel current path. The positive feedback paths cause the voltage at the collector of each input transistor to move in the same direction as the voltage at the base of that input transistor, and thereby reduce the effective input capacitance seen at the input terminals of the differential amplifier.
Abstract:
Systems, methods and devices provide for fast and power efficient transfer of three color data words (e.g., a M-bit red color word, a M bit green color word and a M-bit blue color word) per pixel from a controller to a laser diode driver (LDD). First and second transfer words are produced based on the three color data words. The first transfer word is transferred from the controller to the LDD and stored at LDD in response to a low-to-high portion of a cycle of a data transfer clock, and the second transfer word is transferred and stored in response to a high-to-low portion of a cycle of the data transfer clock. The first, second and third color data words are reproduced by the LDD in dependence on the first and second received transfer words. First, second and third DACs of the LDD are driven with the first color data word, the second color data word, and the third color data word. Three light sources (e.g., red, green and blue laser diodes or LEDs) are driven with output currents of the DACs.
Abstract:
Embodiments of the present invention relate to systems and methods for providing flexible multipulse strategies. In specific embodiments, a plurality of multipulse location registers are dedicated to storing multipulse location information. Each of a plurality of different mark-lengths that can result in at least one multipulse is mapped to one or more bit location within the multipulse location registers, such that a unique multipulse execution strategy can be defined for each of the plurality of different mark-lengths. Each bit location within the multipulse location registers can contain a first type of bit or a second type of bit. The first type of bit is used to indicate where to execute a multipulse, and the second type of bit is used to indicate where to not execute a multipulse. This abstract is not intended to be a complete description of the various embodiments of the present invention.
Abstract:
A delay circuit is provided for use in a ring oscillator of a phase locked loop (PLL). The delay circuit includes a differential pair of NMOS transistors 102 and 103 with an NMOS transistor 101 providing the tail current for the differential pair. Complementary NMOS and PMOS load transistors 104,106 and 105, 107 provide loads for the differential transistor 102 and 103. Transistors 111-114 and 121-122 together with an amplifier 130 provide biasing for the delay device. The amplifier 130 has a non-inverting input set to VDD−VCLAMP. As configured, a constant output voltage swing from VDD to VDD−VCLAMP is provided at the outputs VOUT+ and VOUT− of the delay device, independent of a control voltage VCTL used to set the tail current. The NMOS load transistor 104, as opposed to the PMOS transistor 4 in FIG. 1, does not contribute to the gate parasitic capacitance enabling a high operation speed without consumption of more supply current. A wide frequency tuning range of a ring oscillator using the delay circuit of FIG. 2 is provided because the operating frequency for a ring oscillator will be directly proportional to the tail current through transistor 101.
Abstract:
Methods and system are provided for automatic power control of a laser diode, e.g., in a laser driver. In accordance with an embodiment of the present invention, a power controller includes a detector circuit adapted to detect the output of the laser diode and to produce a measured output therefrom. A comparator compares a desired output to the measured output, and produces an error signal therefrom. The error signal is provided to an integrator circuit that produces an integrated error signal. At least one digital-to-analog converter (DAC) uses the integrated error signal to produce a current drive signal that drives the laser diode.
Abstract:
The present invention is a differential amplifier with circuitry to eliminate the effect of transistor impedance other than an actual load impedance on voltage gain. The circuitry includes a pair of transistors 400 and 402, each with a base connected to a respective input of the differential amplifier along with a similar base connection of a respective one of transistors 100 and 102, and an emitter connected to a current source 404. A collector of transistor 400 is connected through transistor 410 to the emitter of a current sink transistor 306, while the collector of transistor 402 is connected through transistor 412 to the emitter of a current sink transistor 308. Operational amplifiers (opamps) 420 and 422 serve as voltage followers to connect the collector of transistor 100 to the base of transistor 412, and the collector of transistor 102 to the base of transistor 410. An inverting input of the opamps 420 and 422 are connected to the emitter of transistors 410 and 412 to eliminate the effect of a emitter to base voltage drop in transistors 410 and 412. With such components, loading at the outputs V.sub.OUT and V.sub.OUTB is substantially limited to the actual load provided by transistors 306 and 308 and resistors 316 and 318.