摘要:
Embodiments of the present invention are directed to light sensors that primarily respond to visible light while suppressing infrared light. Such sensors are especially useful as ambient light sensors because such sensors can be used to provide a spectral response similar to that of a human eye. Embodiments of the present invention are also directed to methods of providing such light sensors, and methods for using such light sensors.
摘要:
Embodiments of the present invention are directed to light sensors that primarily respond to visible light while suppressing infrared light. Such sensors are especially useful as ambient light sensors because such sensors can be used to provide a spectral response similar to that of a human eye. Embodiments of the present invention are also directed to methods of providing such light sensors, and methods for using such light sensors.
摘要:
A photodetector includes one or more first photodiode regions that are covered by an optical filter configured to reject infrared (IR) light and that produce a first current (I1). The photodetector also includes one or more second photodiode regions that are covered by a light blocking material configured to reject visible and infrared light and that produce a second current (I2). The photodetector also includes one or more third photodiode regions that are not covered by the optical filter and are not covered by the light blocking material and that produce a third current (I3). Additionally, the photodetector includes circuitry configured to produce an output indicative of the first current (I1) or a scaled version of the first current (I1), minus the second current (I2) or a scaled version of the second current (I2), minus the third current (I3) or a scaled version of the third current (I3). The optical filter configured to reject IR light can be, e.g., a dielectric reflective optical coating filter, an IR absorption optical coating filter, or a combination thereof.
摘要:
In an embodiment, a proximity sensor includes a driver, a photo-diode (PD) and an analog-to-digital converter (ADC). The proximity sensor can also include a controller to control the driver. The driver selectively drives a light source, e.g., an infrared (IR) light emitting diode (LED). The PD, which produces a current signal indicative of the intensity of light detected by the PD, is capable of detecting both ambient light and light produced by the light source that is reflected off an object. The ADC receives one or more portion of the current signal produced by the PD. The ADC produces one or more digital output that can be used to estimate the proximity of an object to the PD in a manner that compensates for ambient light detected by the PD and transient changes to the detected ambient light.
摘要:
Embodiments of the present invention are directed to light sensors, that primarily respond to visible light while suppressing infrared light. Such sensors are especially useful as ambient light sensors because such sensors can be used to provide a spectral response similar to that of a human eye. Embodiments of the present invention are also directed to methods of providing such light sensors, and methods for using such light sensors.
摘要:
An optical proximity sensor includes a driver, light detector and offset signal generator. The driver selectively drives a light source. The light detector produces an analog detection signal indicative of an intensity of light detected by the light detector. The detected light can include light transmitted by the light source that reflected off an object within the sense region of the optical sensor, interference light and ambient light. The interference light includes light transmitted by the light source, and detected by the light detector, that was not reflected off an object within the sense region of the optical sensor. The offset signal generator selectively produces an analog offset signal that is combined with the analog detection signal produced by the photodetector to produce an analog compensated detection signal. The analog offset signal compensates for at least a portion of the interference light included in the light detected by the photodetector.
摘要:
A CMOS light detector configured to detect specific wavelengths of light includes a first sensor and a second sensor. The first sensor includes CMOS photocells that are covered by a colored filter layer of a first color that has a first transmittance that allows both light of the specific wavelengths and light of other wavelengths to pass. The second sensor including further CMOS photocells, at least some of which are covered by both a colored filter layer of the first color and a colored filter layer of a second color, stacked one above the other in either order, where the colored filter layer of the second color has a second transmittance that allows light of the other wavelengths to pass. The first sensor produces a first photocurrent, and the second sensor produces a second photocurrent, when light including both the specific and other wavelengths is incident upon the detector. A differential photocurrent, produced by determining a difference between the first and second photocurrents, has a spectral response with at least part of the light of other wavelengths cancelled.
摘要:
A CMOS light detector configured to detect specific wavelengths of light includes a first sensor and a second sensor. The first sensor includes CMOS photocells that are covered by a colored filter layer of a first color that has a first transmittance that allows both light of the specific wavelengths and light of other wavelengths to pass. The second sensor including further CMOS photocells, at least some of which are covered by both a colored filter layer of the first color and a colored filter layer of a second color, stacked one above the other in either order, where the colored filter layer of the second color has a second transmittance that allows light of the other wavelengths to pass. The first sensor produces a first photocurrent, and the second sensor produces a second photocurrent, when light including both the specific and other wavelengths is incident upon the detector. A differential photocurrent, produced by determining a difference between the first and second photocurrents, has a spectral response with at least part of the light of other wavelengths cancelled.
摘要:
Embodiments of the present invention are directed to light sensors, that primarily respond to visible light while suppressing infrared light. Such sensors are especially useful as ambient light sensors because such sensors can be used to provide a spectral response similar to that of a human eye. Embodiments of the present invention are also directed to methods of providing such light sensors, and methods for using such light sensors.
摘要:
An intermediate stage for a rail-to-rail input/output CMOS opamp includes a floating current source separating two current mirrors (151-154,155-158), where the ideal current source includes a floating current mirror (500,501,502,503,504,505) enabling an output quiescent current to be provided which does not vary with changes in the voltage rails or the common-mode input voltage, and enabling elimination of input offset caused by the mismatch of the two current sources (164,166). The NMOS transistor (502) has a source-drain path provided in series with a PMOS transistor (505) serving to connect the current mirrors (151-154) and (155-158) and to eliminate input offset. The source of transistor (500) is separated from the VSS and VDD rails by a PMOS transistor 503 and current source (508) enabling the current mirror (500,501,502,503,504,505) to float so that transistors (502) and (505) will each have a gate to source bias voltage independent of changes in the voltage on the voltage supply rails VDD and VSS and independent of any input common-mode voltage offset. Voltage clamping transistors (600) and (602) can further be included to enable the current mirror transistors (151-154) and (155-158) to be low voltage devices to increase overall operation speed and device matching.