Abstract:
A modular beam-limiting device for use with an x-ray machine includes a base portion and an attachment portion. The base portion includes at least one magnet. The attachment portion includes at least one magnet. The base portion is adapted to be received on an x-ray tubehead housing. The attachment portion is selectively removably couplable to said base portion. The modular beam-limiting device may further include a magnetic field modulator, which is operable to shape a magnetic field; an insert for configuring a size, a shape, or an orientation of an aperture of the beam-limiting device; or an adapter for increasing an axial length of the beam-limiting device.
Abstract:
A patient positioning system for a panoramic dental radiation imaging system, including an upright support, and a patient positioning arm with chin rest mounted thereto. Wands are each rotatably connected to the patient positioning arm and connected together so as to move at identical angles of rotation, but in the opposite direction. Lasers, including a mid-sagittal, a Frankfort Plane, two cuspid, and one toe laser, each providing a line of visible laser light directed at a respective area of a patient's face, or at the floor, assist a technician in properly positioning the patient. A mirror is mounted to the upright support by a mechanism that permits the mirror to be pivoted outward from the support, in either of two directions, so as to enable the technician to see the lasers on the patient's face from the technician's position on either side of the positioning arm.
Abstract:
A device (10) for positioning the location of an emitted x-ray (1 2a) has an optical mirror (20) having at least two leg portions (31, 32) separated by stepped portion (30) formed therewith. Leg portions (31, 32) and stepped portion (30) have substantially uniform x-ray transmisivity. A light emitting assembly (21) for transmitting a locating beam of light (14) onto the stepped portion (30). The device also includes mounting means (13, 22) for mounting the optical mirror (20) proximate to the x-ray emitting device (11) and completely encompassing the emitted x-ray (12a). The locating beam of light (14) is caused to be directed toward the target (15) by the angle of the mirror (20).
Abstract:
A motion system for use in a panoramic dental radiation imaging system, including apparatus for rotating an overhead arm with respect to a support column, apparatus for rotating a C-arm with respect to the overhead arm, and apparatus for moving the C-arm axially with respect to the overhead arm. The overhead arm is rotatably mounted to the support column at a rotation point. The apparatus for rotating the overhead arm is a linear actuator, one end of which is connected to the support column at a first point spaced apart from the rotation point, while the other end is connected to the overhead arm at a second point spaced apart from the rotation point and from the first point. The C-arm rotating apparatus includes a C-arm rotation motor driving a wheel, which is engaged with the C-arm in such a way that the rotation of the wheel causes rotation of the C-arm.
Abstract:
A dental x-ray apparatus (10) includes a tube head (11) formed from a cast zinc material. Structural components of tube head (11) include such component (20) formed from a plastic material impregnated with a high molecular weight substance, such as barium sulfite. X-ray apparatus 10 has a control panel (15) in close proximity to the tube head (11), and is preferably DC powered.
Abstract:
A friction control mechanism for an articulating arm including an arm, a pivot connector, an axial washer, and at least one set screw. An axial washer is placed around each side of a center aperture in the pivot connector. The pivot connector is connected to the arm with a pivot pin through the center aperture in the pivot connector and aligned holes in the first and second sides of the arm. At least one threaded hole is located adjacent the aligned hole in the first side of the arm. A set screw is placed through each threaded hole, making contact with the axial washer. This contact creates a friction force between the pivot connector and the axial washer, keeping the articulating arm from drifting away from its set position. The pivot connector may be connected to another device such as another arm or a machine such as an x-ray machine, or to another pivot connector.
Abstract:
A dental x-ray tube head having a housing with an x-ray tube mounted in it, with improved shielding for preventing stray radiation from emanating outside of the path of the primary x-ray beam. The shielding includes an inner hollow element encasing the x-ray tube and having an aperture through which the primary beam projects, with an open end for connecting wires to the x-ray tube. The shielding further includes an outer hollow element which fits over the inner element in such a way as to cover the open end, with clearance for the wires connected to the tube. Both the inner element and the outer element are comprised of a mixture of polypropylene and barium sulfate. The combination of the inner element and the outer element completely surrounds the x-ray tube with the barium sulfate impregnated material, eliminating the use of lead within the tube head, and thereby providing excellent electrical insulation characteristics besides the x-ray attenuation.