Abstract:
The invention provides a device having first and second balloons. Each of the first and second balloons communicates with an inflation lumen. A differential pressure gauge communicates with both inflation lumens. Each of the inflation lumens also communicates independently with a pump for inflating the balloon. The pressure gauge may include a shut-off valve for terminating inflation in the second balloon when the pressure within the first balloon exceeds the pressure in the second balloon. The pressure gauge may also include a pressure limiter. Methods of using the devices for measuring diameter and pressure of a balloon occluder deployed in a vessel or body cavity are disclosed.
Abstract:
Exemplary occlusion and molding devices and methods involve the use of an expandable balloon. Methods of sealing an aortic side branch in a patient can include advancing an occlusion device within the aorta, positioning a toroidal balloon of the occlusion device adjacent to the aortic side branch, and inflating the balloon to prevent peripheral blood flow from the aorta into the aortic side branch while a central aperture of the balloon allows descending aortic blood flow therethrough. Methods of molding a stent against an interior surface of a vessel of a patient can include advancing a molding device within the vessel, positioning a toroidal balloon of the molding device at least partially withing the stent, and inflating the balloon to exert force to the stent thus dilating the stent and molding it to the interior of the vessel while a central aperture of the balloon allows blood flow therethrough.
Abstract:
Systems and methods employ functional instruments to close incisions and wounds using a suture knot in combination with a biocompatible material composition. The systems and methods are well suited for use, for example, at a vascular puncture site following a vascular access procedure.
Abstract:
A filter device for temporary placement of a filter in an artery or vein is disclosed. The device includes an expandable filter mounted on a distal end of a catheter. The filter comprises a plurality of circumferentially adjacent porous segments that are arranged generally about the surface of a cone having an open base, and the segments are engaged to one another by means, such as a hook. The filter conforms to the interior of a vessel wall when expanded and contracts to a consistent diameter without bunching when stowed. Methods of using the filter device to entrap and remove embolic material from a vessel during endovascular procedures are also disclosed.
Abstract:
A probe having the ability to deliver cardioplegia solution to the coronary sinus under direct visualization and to provide venous drainage from the right atrium for cardiopulmonary bypass. The probe has an elongate tubular member, including a distal end, a proximal end, and a lumen. A membrane, optionally perforated, mounted within the lumen of the tubular member partitions the lumen and is removable or penetrable by a cardioplegia catheter. The distal end comprises a toroidal balloon or a circumferential recessed vacuum manifold. A vacuum port communicates with the distal end of the tubular member or the vacuum manifold. Methods of using the cardioplegia access view probe for catheterization of the coronary sinus and for venous return as herein described are also disclosed.
Abstract:
An expansion frame system for deploying medical devices in a patient's body cavity. The system typically includes an inner wire disposed within a lumen of an outer wire. Distal ends of the inner and outer wires are attached to a substantially circular frame at first and second points. During use, the outer wire is displaced relative to the inner wire, causing the circular frame to rotate about an axis perpendicular to the line defined by the first and second points. Medical devices, such as a filter, a stent, an occluder or a manometer, can be mounted on the circular frame. The diameter of the expansion frame can be varied to achieve optimal contact with the luminal wall of the body cavity. Methods of using the expansion frame system for temporary or permanent placement of a medical device is disclosed.
Abstract:
A balloon delivery system for deploying stents including a balloon catheter, and a stent fixedly positioned on the balloon portion of the balloon catheter by at least one protrusion such as annular cuff formed around the balloon. The balloon can include two or more continuous or discontinuous cuffs formed along the balloon which maintain one or more stents in position on the balloon. The protrusion can be created from excess material of the balloon which is configured in a desired fashion around the balloon to form the protrusion. The protrusion improves the fixation of the stent on the balloon catheter until the balloon is inflated to deploy the stent within a body lumen. The protrusion restrains the movement of the stent without a significant change in the overall profile of the balloon delivery system. The protrusion or protrusions can be provided as a series of circumferentially spaced-apart projections, a C-shaped annular cuff, a continuous annular cuff or two or more axially spaced-apart projections or cuffs.
Abstract:
An expansion frame system for deploying medical devices in a patient's body cavity. The system typically includes an inner wire disposed within a lumen of an outer wire. Distal ends of the inner and outer wires are attached to a substantially circular frame at first and second points. During use, the outer wire is displaced relative to the inner wire, causing the circular frame to rotate about an axis perpendicular to the line defined by the first and second points. Medical devices, such as a filter, a stent, an occluder or a manometer, can be mounted on the circular frame. The diameter of the expansion frame can be varied to achieve optimal contact with the luminal wall of the body cavity. Methods of using the expansion frame system for temporary or permanent placement of a medical device is disclosed.
Abstract:
A method of treating tissue lyophilizes a biocompatible polymer having a functionality equal to or greater than three. The method provides a protein solution. The method mixes the protein solution with the lyophilized polymer to reconstitute the polymer and form a mixture, wherein, upon mixing, the protein solution and the polymer cross-link to form a material composition. The method applies the material composition to a tissue region. The biocompatible polymer can comprise, e.g., poly(ethylene glycol) PEG. The protein solution can comprise, e.g., albumin.
Abstract:
Systems and methods convey a closure material into a catheter, e.g., to seal a puncture site in a blood vessel. The closure material comprises a mixture of first and second components, which, upon mixing, undergo a reaction to form solid closure material composition. The first component may be a lyophilized polyethylene glycol (PEG) material contained within a vial. The second component may be a buffered albumin solution plus water contained within a syringe. An applicator provides easy and effective mixing of the components and delivery of the mixture to the puncture site.