Abstract:
A mobile terminal and a speaker device thereof are provided. The mobile terminal includes a fixed body, a moving body coupled to the fixed body and movable in a linear direction relative to the fixed body, and a speaker device fastened to one of a surface of the fixed body at which the moving body is coupled and a surface of the moving body at which the fixed body is coupled for outputting sound, wherein the sound from the speaker device is output in all directions through a gap located between the fixed body and the moving body.
Abstract:
Disclosed is a command planning apparatus of a low-earth orbit satellite, and a low-earth orbit satellite control system including the same. The present invention automates the process of executing the command plan for converting the satellite task schedule planned on the ground into telecommands available by the satellite in the low-earth orbit satellite control system, and automatically selects a data set established by the parameters related to the execution task of the satellite according to the mapping rule.
Abstract:
A telemetry data retrieval apparatus and method for post-processing are provided. The telemetry data retrieval apparatus may include a retrieval initiating unit to receive an input of a retrieval time, and to calculate a percentage of the retrieval time during an entire retrieval period, a start position calculating unit to calculate a retrieval start position in which data retrieval is started within a stored file, based on the calculated percentage, and a telemetry data retrieval unit to verify a start pattern and a time tag from the calculated retrieval start position, and to retrieve a position of telemetry data in the stored file.
Abstract:
An apparatus for automatically generating satellite operation procedure (SOP) parameters is provided. The apparatus includes a parameter extraction unit configured to extract one or more SOP parameters corresponding to an SOP; a transformation formula extraction unit configured to extract a transformation formula corresponding to the extracted SOP parameters; and a calculation unit configured to calculate values of the extracted SOP parameters based on property information for performing a satellite task and the extracted transformation formula.
Abstract:
Provided is a cloud computing service providing system that may generate a list by classifying at least one information providing terminal based on platform information and content information received from the at least one information providing terminal, may provide the generated list to at least one user terminal, and, when a selection signal indicating that one of the at least one information providing terminal is selected by a user terminal, may connect the user terminal with the selected information providing terminal based on a peer-to-peer (P2P) scheme.
Abstract:
Provided is a method of correcting an ionosphere error, a system of a precise orbit determination using the same and a method thereof. The method includes the steps of: a) determining a time of a highest elevation angle of a GPS satellite per one pass of each GPS satellite received at a LEO satellite or a receiver on a ground; b) determining a minimum total electron content found from an ionosphere model of the determined time per one pass of each GPS satellite; c) determining a total electron content directly calculated from the LEO satellite or a single frequency GPS data; d) determining an ionosphere error value of a single frequency GPS data by combining the minimum total electron content and the directly calculated total electron content; and e) correcting pseudorange data or carrier phase data based on the determined ionosphere error value.
Abstract:
Disclosed is a command planning apparatus of a low-earth orbit satellite, and a low-earth orbit satellite control system including the same. The present invention automates the process of executing the command plan for converting the satellite task schedule planned on the ground into telecommands available by the satellite in the low-earth orbit satellite control system, and automatically selects a data set established by the parameters related to the execution task of the satellite according to the mapping rule.
Abstract:
Provided is a method of correcting an ionosphere error, a system of a precise orbit determination using the same and a method thereof. The method includes the steps of: a) determining a time of a highest elevation angle of a GPS satellite per one pass of each GPS satellite received at a LEO satellite or a receiver on a ground; b) determining a minimum total electron content found from an ionosphere model of the determined time per one pass of each GPS satellite; c) determining a total electron content directly calculated from the LEO satellite or a single frequency GPS data; d) determining an ionosphere error value of a single frequency GPS data by combining the minimum total electron content and the directly calculated total electron content; and e) correcting pseudorange data or carrier phase data based on the determined ionosphere error value.
Abstract:
In a system for determining a precise orbit of a satellite, a satellite control system includes a tracking, telemetry and command module for receiving telemetry data from the satellite, tracking the satellite, and performing link to the satellite; a satellite operations sub module for extracting L1 carrier phase data by processing the telemetry data, monitoring the satellite, generating telecommand data, and controlling the satellite; and a mission analysis and planning subsystem for determining the precise orbit of the satellite using the L1 carrier phase data collected by a satellite, L1/L2 carrier phase data of the reference ground stations of the GPS satellites collected by an IGS, and a path error caused by the ionosphere of data, and analyzing and planning a mission of the satellite.
Abstract:
A flight dynamics subsystem (FDS), a velocity increment calculation module, and operational methods of the same are provided. A used fuel quantity actually used in a satellite is calculated, and a velocity increment is calculated using the calculated fuel quantity. Therefore, an orbit of the satellite may be estimated more accurately.