Abstract:
A light-emitting diode (LED) light source control method is disclosed. The light-emitting diode light source control method is used for controlling a composite and a single color LED light source. The composite color LED light source can provide two of the three original red, green and blue color lights and the single color LED light source provides the third original color. The composite and the single color LED light sources provide illuminations sequentially so that the light sources need not to be turned on continually and the data generated by the composite and the single color lights on the red, green and blue channels of image sensors can be processed sequentially.
Abstract:
A receiving device for a global positioning system and an antenna structure thereof. The receiving device includes a housing, a circuit board and the antenna structure. The circuit board is disposed inside the housing and has a ground portion and a signal feeding portion. The antenna structure is disposed inside the housing and includes a metal plate, a first electric conducting element and a second electric conducting element. The metal plate is used for receiving a GPS signal. The first electric conducting element has one end coupled to the metal plate, and the other end coupled to the ground portion of the circuit board. The second electric conducting element for feeding the GPS signal to the circuit board has one end coupled to the metal plate, and the other end coupled to the signal feeding portion of the circuit board.
Abstract:
A full-zone optical image addressing apparatus, including an addressing device, an image extraction converter, a comparator, an AND gate and a counter. The addressing device is located at the enclosure of the scanner and includes a plurality of geometric patterns. Each of the geometric patterns includes a plurality of rows of pixels. While receiving an exposure signal, the image extraction converter extracts one row of pixels from the addressing device, such that a series of analog signals is obtained and output to the comparator. The comparator then compares the series of analog signals to an analog critical voltage to output a series of analog comparison signals to the AND gate. The AND gate synchronously processes the series of analog comparison signals and a pixel rate clock to output the pixel data corresponding to the extracted row of pixels to the counter. After receiving the synchronously processed pixel value from the AND gate, the counter calculates and outputs the extracted row of pixels, including the amount of pixels and the geometric patterns in the row of pixels.
Abstract:
A foldable wheel seat has a base, an operating bar, a first rotating shaft and two wheel axles. The base has a groove formed in a top face of the base. The operating bar is mounted pivotally in the groove of the base. The first rotating shaft is mounted rotatably in the base and has at least one end and two pulling segments. The at least one end of the first rotating shaft is extended into the groove of the base and is securely connected to the operating bar. The pulling segments are mounted on the first rotating shaft and each pulling segment has two pulling tabs. The wheel axles are mounted rotatably in the base and are perpendicular to the first rotating shaft and below the pulling segments of the first rotating shaft. Each wheel axle has an engaging block, at least two wheels, a holding panel and a torsional spring.
Abstract:
A method for increasing signal to noise ratio is disclosed. The method can automatically detect saturation output voltage of the photosensors via adjusting exposure time or illumination intensity so as to obtain optimum output voltage of the photosensors as well as high signal to noise ratio that can generate high quality images.
Abstract:
A full-zone optical image addressing apparatus, including an addressing device, an image extraction converter, a comparator, an AND gate and a counter. The addressing device is located at the enclosure of the scanner and includes a plurality of geometric patterns. Each of the geometric patterns includes a plurality of rows of pixels. While receiving an exposure signal, the image extraction converter extracts one row of pixels from the addressing device, such that a series of analog signals is obtained and output to the comparator. The comparator then compares the series of analog signals to an analog critical voltage to output a series of analog comparison signals to the AND gate. The AND gate synchronously processes the series of analog comparison signals and a pixel rate clock to output the pixel data corresponding to the extracted row of pixels to the counter. After receiving the synchronously processed pixel value from the AND gate, the counter calculates and outputs the extracted row of pixels, including the amount of pixels and the geometric patterns in the row of pixels.
Abstract:
A method for increasing signal to noise ratio is disclosed. The method can automatically detect saturation output voltage of the photosensors via adjusting exposure time or illumination intensity so as to obtain optimum output voltage of the photosensors as well as high signal to noise ratio that can generate high quality images.
Abstract:
A handcart has a base frame, a handle assembly, two wheel brackets, multiple wheels and two levers. The handle assembly is retractably connected to the base frame. Each wheel bracket is pivotally attached to one side of the base frame with a pivot pin. At least one of the wheels is rotatably mounted on each wheel bracket. One end of each lever is pivotally connected to each pivot pin, and another end is operationally connected to the handle assembly. Accordingly, the wheel brackets with the wheels will be automatically retracted or expanded through transmissions of the levers when the handle assembly is moved to an expanded position or a retracted position. The size of an object with the handcart can be minimized. In addition, getting the indoors dirty is avoided.
Abstract:
A dual light source voltage-modulated reciprocal control circuit for a scanner. The circuit includes a voltage modulation circuit, a first lamp driving circuit, a second lamp driving circuit and a reciprocal control circuit. The voltage-modulating circuit generates a modulated voltage whose magnitude can be adjusted through pulse width modulation of a square wave. The first lamp driving circuit receives the modulated voltage to drive a first lamp. Similarly, the second lamp driving circuit receives the modulated voltage to drive a second lamp. The reciprocal control circuit redirects the modulated voltage to the first lamp driving circuit or the second lamp driving circuit according to the dictate of a reciprocal logic signal.
Abstract:
A receiving device for a global positioning system and an antenna structure thereof. The receiving device includes a housing, a circuit board and the antenna structure. The circuit board is disposed inside the housing and has a ground portion and a signal feeding portion. The antenna structure is disposed inside the housing and includes a metal plate, a first electric conducting element and a second electric conducting element. The metal plate is used for receiving a GPS signal. The first electric conducting element has one end coupled to the metal plate, and the other end coupled to the ground portion of the circuit board. The second electric conducting element for feeding the GPS signal to the circuit board has one end coupled to the metal plate, and the other end coupled to the signal feeding portion of the circuit board.