Abstract:
A hinge structure includes a fixing component and a pivoting base. The fixing component includes a fixing base and at least three torsion hooks. The fixing base includes a first sidewall and a second sidewall opposite to each other. The at least three torsion hooks are disposed side by side between the first sidewall and the second sidewall. Each of the torsion hooks includes a fixing end portion and a pressing end portion opposite to each other. The fixing end portion of the torsion hook at center is fixed to the first sidewall, and the pressing end portion is close to the second sidewall. The two fixing end portions of the two torsion hooks at two sides are respectively fixed to the second sidewall, and the two pressing end portions are respectively close to the first sidewall. A pivoting base is rotatably disposed at the torsion hook, and the three pressing end portions respectively press the pivoting base. An electronic device having a hinge structure is further provided.
Abstract:
An electrode material for a lithium ion battery includes conductive active particles and an ionic cover layer covering the active particles. The ionic cover layer includes a matrix of functional group-substituted polyaryletherketone and graphene particles dispersed in the matrix. A method for preparing the electrode material and an electrode including the electrode material are also disclosed.
Abstract:
An anode material composition for a lithium ion battery includes: an active material unit including a graphite material and a silicon-containing material, the graphite material having a plurality of graphite particles, the silicon-containing material having a plurality of silicon flakes dispersed among the graphite particles; and an additive unit including a binder bonded to the graphite particles and the silicon flakes. The silicon flakes have a length and a thickness. The thickness of the silicon flakes ranges from 20 to 300 nm, and a ratio of the length to the thickness of the silicon flakes ranges from 2:1 to 2000:1.
Abstract:
A stress-buffering silicon-containing composite particle for a battery anode material, includes a stress-buffering particle having a Young's modulus greater than 100 GPa, a binder, and a silicon-containing shell surrounding and bonded to the stress-buffering particle through the binder. The silicon-containing shell has a plurality of silicon flakes that are randomly stacked and that are bonded to one another through the binder to form a porous structure.