Abstract:
An electrode material for a lithium ion battery includes conductive active particles and an ionic cover layer covering the active particles. The ionic cover layer includes a matrix of functional group-substituted polyaryletherketone and graphene particles dispersed in the matrix. A method for preparing the electrode material and an electrode including the electrode material are also disclosed.
Abstract:
An anode material composition for a lithium ion battery includes: an active material unit including a graphite material and a silicon-containing material, the graphite material having a plurality of graphite particles, the silicon-containing material having a plurality of silicon flakes dispersed among the graphite particles; and an additive unit including a binder bonded to the graphite particles and the silicon flakes. The silicon flakes have a length and a thickness. The thickness of the silicon flakes ranges from 20 to 300 nm, and a ratio of the length to the thickness of the silicon flakes ranges from 2:1 to 2000:1.
Abstract:
A stress-buffering silicon-containing composite particle for a battery anode material, includes a stress-buffering particle having a Young's modulus greater than 100 GPa, a binder, and a silicon-containing shell surrounding and bonded to the stress-buffering particle through the binder. The silicon-containing shell has a plurality of silicon flakes that are randomly stacked and that are bonded to one another through the binder to form a porous structure.