Abstract:
A level of trust is determined for a consumer equipment. Based on the determined level of trust, a level of QoS is controlled for information packets that are associated with the consumer equipment and communicated through a packet switched network and/or access by the consumer equipment to communicate through the packet switched network is controlled. The consumer equipment may be selectively allowed to communicate through the packet switched network based on the determined level of trust and based on available resources of the packet switched network. Access to the packet switched network and allowed QoS for information packets communicated there through may thereby be based on a level of trust of the associated consumer equipment.
Abstract:
Data architectures provide for managing Quality of Service (QoS) and/or bandwidth allocation in a Regional/Access Network (RAN) that provides end-to-end transport between a Network Service Provider (NSP) and/or an Application Service Provider (ASP), and a Customer Premises Network (CPN) that includes a Routing Gateway (RG). The data architecture includes a NSP access session record maintained at the RAN that defines QoS and/or bandwidth allocation for an access session, such as a Point-to-Point (PPP) access session, associated with the RG and the NSP. A corresponding NSP access session record is maintained at the NSP associated with the access session. The NSP access session record at the RAN and the corresponding NSP access session record at the NSP both define a QoS and/or bandwidth allocation specified by the NSP associated with the session or both define a QoS and/or bandwidth allocation specified by the RAN. An application flow record maintained at the RAN defines QoS and/or bandwidth allocation for an application flow associated with the RG and the ASP. A corresponding application flow record is maintained at the ASP associated with the application flow. Both the application flow record at the RAN and the corresponding application flow record at the ASP define a QoS and/or bandwidth allocation specified by the ASP.
Abstract:
Methods for providing video on demand service from an Application Service Provider (“ASP”) to a user over a Regional/Access Network (“RAN”) are provided. A request for a video on demand application flow may be received from the user. In response to the request, information may be obtained from the RAN regarding the capabilities of the user's Customer Premises Equipment (“CPE”). A profile may then be forwarded from the ASP to the RAN that specifies at least one policy regarding the transmission of data associated with the video on demand application flow across the RAN. The data associated with the video on demand application flow may then be forwarded across the RAN in accordance with the profile. The RAN may also be provided a default profile that specifies default policies that apply with respect to video on demand application flows that are transmitted across the RAN prior to obtaining information from the RAN regarding the capabilities of the CPE of any specific user. The user specific profiles may then be used to alter one or more policies specified in the default profile.
Abstract:
Quality of Service (QoS) and/or bandwidth allocation is managed in a Regional/Access Network (RAN) that provides end-to-end transport between a Network Service Provider (NSP) and/or an Application Service Provider (ASP), and a Customer Premises Network (CPN) that includes a Routing Gateway (RG). A first subsystem is configured to manage QoS and/or bandwidth allocation for an access session in the CPN. A second subsystem is configured to manage QoS and/or bandwidth allocation for an application flow in the CPN. Thus, the RAN can independently manage QoS, session authentication and/or bandwidth allocation for an access session and for an application flow.
Abstract:
Methods, systems, and products are disclosed for specifying a signature for an encrypted packet stream. One method receives the encrypted stream of packets, and encryption obscures the contents of a packet. A signature for insertion into the stream of packets is specified, and the signature identifies a type of data encrypted within the stream of packets. The signature identifies the contents of the packet despite the encryption obscuring the contents.
Abstract:
Methods, systems, and products are disclosed for specifying a signature for an encrypted packet stream. One method receives the encrypted stream of packets, and encryption obscures the contents of a packet. A signature for insertion into the stream of packets is specified, and the signature identifies a type of data encrypted within the stream of packets. The signature identifies the contents of the packet despite the encryption obscuring the contents.
Abstract:
Methods, systems, and devices are disclosed for detecting encrypted Internet Protocol packet streams. A probe stream having a known observable parameter is generated. The observable parameter exhibits a known characteristic of a known type of data encrypted within a stream of packets. The probe stream is communicated to a network element via a communications network. When the probe stream is received by the network element, the network element can compare the known observable parameter to an actual value. Any difference between the known observable parameter and the actual value can be used to correct for network-induced variation and other effects, thus ensuring accurate detection and identification of data types within encrypted streams of packets.
Abstract:
Quality of Service (QoS) and/or bandwidth allocation is managed in a Regional/Access Network (RAN) that provides end-to-end transport between a Network Service Provider (NSP) and/or an Application Service Provider (ASP), and a Customer Premises Network (CPN) that includes a Routing Gateway (RG). A first subsystem is configured to manage QoS and/or bandwidth allocation for an access session in the CPN. A second subsystem is configured to manage QoS and/or bandwidth allocation for an application flow in the CPN. Thus, the RAN can independently manage QoS, session authentication and/or bandwidth allocation for an access session and for an application flow.
Abstract:
Methods, systems, and products are disclosed for detecting encrypted packet streams. One method notes an observable parameter of an encrypted stream of packets. The parameter is observable despite encryption obscuring the contents of the encrypted stream of packets. The type of data within the encrypted stream of packets is inferred from the observable parameter, wherein, despite the encryption, the type of data within the encrypted stream of packets may be inferred.
Abstract:
Quality of Service (QoS) in a communication network is managed. A service provider requests a level of QoS for communication in the communication network using a QoS request. The requested level of QoS may be allocated to the service provider based on the QoS request. The service provider may make the QoS request on its own initiative and/or in response to a request from an application that is hosted by the service provider. A QoS level may then be allocated to the service provider and/or to particular applications that are hosted by the service provider.