Abstract:
A surface mountable retention bracket (40) for an electrical connector (1) having a housing (10) with outwardly extending mounting flanges (12) along a mounting face (102) thereof, each flange including two vertical enclosed channels (14) extending therethrough to the mounting face with a partition (15) therebetween, the channels being interconnected by a slot (16) undercutting the partition. The retention bracket includes a base (42) retained in the slot, a pair of mounting legs (43) extending through the channels and beyond the mounting face so as to be soldered onto a printed circuit board, and a retention tab (44) inserted into a recess (17) defined in the partition.
Abstract:
A cable connector for connecting a plurality of coaxial cables to a printed circuit board comprises an insulative housing mounted on a printed circuit board, a plurality of signal terminals, a grounding terminal and a snap cover secured on the housing. The housing defines a plurality of first receiving portions for receiving the coaxial cables. Each signal terminal comprises a solder portion soldered on the printed circuit board and a contact portion extending into the corresponding first receiving portion of the housing. The grounding terminal received in the housing comprises a plurality of solder sections soldered to the printed circuit board and a plurality of tabs extending into the first receiving portions for connecting with metal braids of the coaxial cables, establishing grounding connections. The snap cover defines a plurality of second receiving portions corresponding to the first receiving portions of the housing. The coaxial cables are clamped between the first receiving portions and the second receiving portions thereby pressing conductors of the coaxial cables to contact the contact portion of corresponding signal terminals and preventing displacement of the coaxial cables from the cable connector.
Abstract:
An electrical connector assembly comprises a housing having mating and rear surfaces, and defining first passageways between the mating and rear surfaces. A plurality of first terminals is assembled to the first passageways from the rear face. Each terminal has an insulation displacement section extending beyond the rear face. At least a slot is defined in the rear face separating at least one terminal from the rest of the first terminals thereby preventing sparks generated from therebetween. A cover is assembled to the rear face enclosing the insulation displacement sections of the terminals. The cover includes a barrier received in the slot of the housing thereby eliminating sparks resulted when the one terminal carries high voltage.
Abstract:
A micro coaxial cable connector assembly for contact with a mating electrical connector, includes a first and second housing means, a cable set with a plurality of cables, and a plurality of contacts. The first and second housing members are efficiently and durably retained together by means of the cooperation between a pair of channels and latch portions thereof and the interference fit of first retention sections and second retention sections of the contacts with a plurality of grooves and the passageways thereof. The cable set consists of the juxtaposed cables each having at least a signal segment and a grounding segment, and a grounding bar defined with two plates soldered with the grounding segments of the cables. Each passageway is equipped with orientating means for convenience of soldering the signal segment of the cable with the tail of section of the corresponding contact. A method of making the cable connector assembly is introduced for convenience of the assembly.
Abstract:
An FFC connector having a strain relief comprises an elongate dielectric housing (10) having front and rear faces (10a, 10b). The front face (10a) defines a lengthwise slot (10c) for receiving a flat flexible cable (20) therein. The housing (10) defines a plurality of passageways (11) communicating with the slot (10c). Each passageway (11) receives a terminal (12) therein for electrically connecting with a conductor of the inserted flat flexible cable (20). A supporting platform (30) is assembled to the dielectric housing (10). An elongate latch (31) upwardly extends from a front periphery of the platform (30) thereby defining a receiving space therein. An edge of a backing plate (22) of the inserted flat flexible cable (20) interlocks with the supporting platform (30).
Abstract:
An electrical connector (100) includes a unitary insulative housing (1) including a base (10) defining a number of parallel slots (13) and a first shroud (11) extending forwardly from the base, a number of parallelly arranged circuit board modules (3) and a metal stiffener (2) attached to the housing. The circuit board modules are retained by and between the metal stiffener and the housing. Each circuit board module includes a dielectric spacer (30), a circuit board (36) attached to the dielectric spacer and received in a corresponding slot of the housing, and a row of press-fit contacts (38) mechanically and electrically connecting with the circuit board. The metal stiffener includes a second shroud (201) vertically spaced from the first shroud. The circuit boards have mating portions (362) disposed between the first and the second shrouds.