摘要:
1064-nm and 1319-nm light respectively generated by two lasers is combined and injected into a doubly resonant sum-frequency generator. The optical path length of the sum-frequency generator is adjusted responsive to feedback of the 1319-nm light to maintain 1319-nm resonance. Feedback of 1064-nm light is concurrently used to adjust the 1064-nm laser responsive to the optical path length to maintain 1064-nm resonance. Light output from the sum-frequency generator is compared to the sodium D2a wavelength i.e., approximately 589 nm, and the 1319-nm laser is responsively adjusted to eliminate any differential. This abstract is provided to comply with the rules requiring an abstract, and is intended to allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
A specially cut uncoated birefringent crystal having three Brewster-cut faces with adjacent coated Brewster-cut coupling prisms for optical frequency conversion. Two IR input frequencies are used to obtain a third visible light frequency by sum-frequency generation. The uncoated birefringent crystal permits high power input beams. The two Z-polarized IR beams enter the lower portion of the Brewster cut IR input end of the crystal and pass out the Brewster cut lower portion of the output end, generating a Y-polarized visible light beam. The visible wavelength beam is reflected at the Brewster cut Z-polarized surface at the output end and again reflected at the upper output end surface cut perpendicular to the Brewster cut. The visible beam travels back toward the IR input end near the top surface of the crystal and exits through an upper Brewster cut surface cut for Y-polarized light. Input and output prisms with appropriate optical coatings are used to facilitate the process.
摘要:
A desired Nth-order Stokes output and corresponding zeroth-order Stokes pump wavelengths are seeded into a Raman amplifier comprised of one or more Raman resonators in series sequentially tuned to the 1st, 2nd, . . . N−1st Stokes orders. The pump wavelength is amplified and sequentially converted to the 1st, 2nd, . . . N−1st order Stokes wavelengths as it propagates through the apparatus. The desired Nth-order Stokes output wavelength is then amplified by the N−1st Stokes order as it propagates through the final resonator tuned to the N−1st Stokes order. Each Raman resonator includes a Raman photosensitive Raman fiber located between a pair of Bragg gratings. The linewidths of the various Stokes orders can be controlled through adjusting the resonant bandwidths of the Raman resonators by offsetting, through heating, the reflectivity bandwidths of each pair of Bragg gratings respectively located in the Raman resonators.
摘要:
A specially cut uncoated birefringent crystal having three Brewster-cut faces with adjacent coated Brewster-cut coupling prisms are used for optical frequency conversion. Two input frequencies are used to obtain a third frequency by sum-frequency generation. The uncoated birefringent crystal permits high power input beams.