Abstract:
An electrically-driven liquid crystal lens, which can be switched between a convex lens and a concave lens by changing an optical path difference based on an electric field application, and a stereoscopic display device using the same are disclosed. The electrically-driven liquid crystal lens includes first and second substrates arranged opposite each other and each defining a plurality of lens regions, a plurality of first electrodes formed on the first substrate based on the lens region and spaced apart from one another, a second electrode formed over the entire surface of the second substrate, a liquid crystal layer filled between the first substrate and the second substrate, first and second voltage sources to apply different voltages to the plurality of first electrodes in each lens region, the first and second voltage sources providing the liquid crystal layer between the first and second substrates with a convex lens optical path difference and a concave lens optical path difference, respectively, with respect to each lens region, and a selector to select any one of the first and second voltage sources so as to apply voltages to the first electrodes.
Abstract:
An electrically-driven liquid crystal lens, and a stereoscopic display device using the same, including first and second substrates arranged opposite each other and including an active region having a plurality of lens regions and a pad region defined at an outer rim of the active region, a plurality of first electrodes formed on the first substrate to correspond to the respective lens regions and spaced apart from one another, a second electrode formed on the entire surface of the second substrate, a voltage source to apply different voltages to the plurality of first electrodes, respectively, and to apply a ground voltage to the second electrode, and a liquid crystal layer interposed between the first substrate and the second substrate.
Abstract:
The present invention is for a switchable 3-dimensional conversion device having a spacer stably formed at a predetermined height by imprinting, a manufacturing method thereof and a stereoscopic image display device using the same, the method includes: providing a first electrode on an inner surface of a first substrate; applying a resin material to the first electrode to a predetermined thickness; placing a mold structure which has a concave part formed with a predetermined depth thereon, on the resin material; stamping the resin material using the mold structure, in order to form a spacer pattern; dry etching the spacer pattern to form a spacer; forming a plurality of second electrodes, which are spaced from one another and have longitudinal axes in one direction, respectively, on a second substrate; and arranging the first and second substrates opposite to each other, bonding the same, and forming a liquid crystal layer between the first and second substrates.
Abstract:
Disclosed is a display device adapted to selectively display a normal image, a stereoscopic image, a multi-view image and a stereoscopic multi-view image is disclosed. The display device includes a liquid crystal panel displaying an image; a polarizer disposed on the liquid crystal panel; a liquid crystal lens disposed on the polarizer; and a polarizing member interposed between the liquid crystal lens and the liquid crystal panel, wherein an axis of light transmitted through the liquid crystal lens coincides with an optical axis of the polarizer. Accordingly, the display device can selectively display a normal image, a stereoscopic image, a multi-view image and a stereoscopic multi-view image, while improving the picture quality and the brightness.
Abstract:
Disclosed are an electrically-driven liquid crystal lens which includes a light shade to be switched on/off according to whether or not voltage is applied, reducing a cell gap of a liquid crystal layer, and a stereoscopic display device using the same, the electrically-driven liquid crystal lens includes first and second substrates opposite each other and each including plural lens regions and a light shade provided at a boundary of each lens region, first electrodes formed in a given direction on the first substrate in each lens region, a second electrode formed on the second substrate and having an aperture corresponding to the light shade, first and second light shade switching electrodes formed at the light shade and extending parallel to the first electrodes, a liquid crystal layer between both the substrates, and a polarizer plate formed above the second substrate and having a first transmission axis.
Abstract:
An electrically-driven liquid crystal lens wherein electric connection between finely split electrodes and signal lines used to apply signals to the split electrodes can be accomplished using a minimal number of masks and signals can be applied to the finely split electrodes without line resistance, and a stereoscopic display device using the same are disclosed. The liquid crystal lens includes first and second substrates arranged opposite each other and each defining a plurality of lens regions, a plurality of metal lines formed on the first substrate, a first insulating film formed on the first substrate, a plurality of first electrodes formed on the first insulating film in the respective lens regions to intersect the plurality of metal lines, a second insulating film formed on the first electrodes, a plurality of second electrodes formed on the second insulating film at positions alternating with the first electrodes, a first contact structure between the first electrodes and the metal lines using a transparent electrode pattern of the same layer as the second electrodes, a second contact structure between the second electrodes and the plurality of metal lines, a common electrode formed over the entire surface of the second substrate, and a liquid crystal layer filled between the first substrate and the second substrate.
Abstract:
A liquid crystal lens electrically driven and stereoscopy display device using the same are disclosed, by which a thickness of a liquid crystal layer provided to the liquid crystal lens electrically driven is reduced in a manner of applying fresnel lens within a pitch anisotropically.
Abstract:
An electrically-driven liquid crystal lens, which can achieve not only a gentle parabolic lens plane when being realized via alignment of liquid crystals based on a changed electrode configuration, but also a reduced cell gap of a liquid crystal layer and a stable profile even in a large-area display device, and a stereoscopic display device using the same are disclosed.
Abstract:
An electrically-driven liquid crystal lens wherein electric connection between finely split electrodes and signal lines used to apply signals to the split electrodes can be accomplished using a minimal number of masks and signals can be applied to the finely split electrodes without line resistance, and a stereoscopic display device using the same are disclosed. The liquid crystal lens includes first and second substrates arranged opposite each other and each defining a plurality of lens regions, a plurality of metal lines formed on the first substrate, a first insulating film formed on the first substrate, a plurality of first electrodes formed on the first insulating film in the respective lens regions to intersect the plurality of metal lines, a second insulating film formed on the first electrodes, a plurality of second electrodes formed on the second insulating film at positions alternating with the first electrodes, a first contact structure between the first electrodes and the metal lines using a transparent electrode pattern of the same layer as the second electrodes, a second contact structure between the second electrodes and the plurality of metal lines, a common electrode formed over the entire surface of the second substrate, and a liquid crystal layer filled between the first substrate and the second substrate.
Abstract:
An electrically-driven liquid crystal lens, which can achieve not only a gentle parabolic lens plane when being realized via alignment of liquid crystals based on a changed electrode configuration, but also a reduced cell gap of a liquid crystal layer and a stable profile even in a large-area display device, and a stereoscopic display device using the same are disclosed.