Abstract:
In one aspect, the invention is directed to a belt tensioner for tensioning a belt, comprising a pivot shaft that is fixedly mountable with respect to an engine block of an engine, a tensioner arm rotatably mounted to the pivot shaft for pivoting about a tensioner arm axis in a first direction and in an opposing second direction, a pulley rotatably mounted to the tensioner arm for rotation about a pulley axis, and a tensioner spring positioned to bias the tensioner arm in the first direction, wherein the tensioner spring has a first end and a second end, wherein the first end is engaged with the tensioner arm, and a micro adjustment mechanism that is operatively connected to control the position of the second end of the tensioner spring so as to control the tension in the tensioner spring.
Abstract:
A system and method is provided for determining changes in the angular position of a driven pulley, with respect to a driving pulley, when the driven and driving pulleys are synchronously linked by a flexible drive member such as a toothed belt or a chain. From these determined changes in the angular positions, the system and method can determine the condition of the flexible drive member and can output an appropriate signal when the condition of the flexible drive member has exceed a pre-defined value. Further, the system and method can detect a variety of other undesired conditions in the operation of an engine and/or the relative angular position information can be used to alter operation of the engine to improve the engine's operating efficiency and/or reduce the emissions created during operation of the engine.
Abstract:
A component, such as an engine accessory for an automotive engine, that has clutch with a helical clutch coil and an axially movable armature. The helical clutch coil is normally engaged so as to transmit rotary power between a driving member and a driven member. The armature can be moved to apply a force to a tang of the helical clutch coil that causes the helical clutch coil to disengage to an extent where full rotary power is not passed through the clutch to drive the component.
Abstract:
A component, such as an engine accessory for an automotive engine, that has clutch with a helical clutch coil and an axially movable armature. The helical clutch coil is normally engaged so as to transmit rotary power between a driving member and a driven member. The armature can be moved to apply a force to a tang of the helical clutch coil that causes the helical clutch coil to disengage to an extent where full rotary power is not passed through the clutch to drive the component.
Abstract:
A tensioner having a backstop device which allows free rotation of the pivot arm in a first direction but controls rotation of the pivot arm in a second, opposite direction. The backstop device permits a predetermined, limited amount of free rotation in the second direction and thereafter, employs a braking device to prevent rotation in the second direction if the torque that acts on the pivot art is less than a predetermined threshold.
Abstract:
A tensioner (10) features a backstop device (40) which allows free rotation of the pivot arm (20) in one direction but not the other. Reverse rotation is prevented by friction that is able to resist torque on the pivot arm (20) under ordinary operating conditions which otherwise could permit belt tooth-skip to occur. In disclosed embodiments, the backstop device (40) includes a stop sleeve (50) and a clamp holder (60) which are axially interlocked and are able to rotate relative to each other. A clutch spring (80) surrounds permits relative rotation between the stop sleeve (50) and the clamp holder (60) in one direction but not the other. A clamp (70) retained within the clamp holder (60) frictionally engages the pivot shaft. A viscous coupling may be used in place of the frictional clamp.
Abstract:
A tensioner for tensioning engine driven driving elements, such as belts or chains, is disclosed. In accordance with one aspect of the invention, the tensioner is initially installed with the pivot structure spaced past the perpendicular angular position thereof. In accordance with another aspect of the invention, the tension required to move the pivot structure to the end of its range of angular positions is at least 75% more than at the hot engine angular position thereof. In accordance with another aspect of the invention, the tensioner has a stop at the maximum travel position thereof and the tension required to move the pivot structure to its maximum travel position is at least 75% more than at the hot engine angular position thereof. In accordance with a still further aspect of the invention, the tension required to move the pivot structure to a potential tooth skip angular position is greater than the maximum tension the engine is capable of creating.