Abstract:
An apparatus and method is given for evaluating a well fluid sub-sample at the well surface as the sample is transported to the well surface from a downhole wellbore location. The invention collects a formation fluid sample under pressure. The fluid sample is further pressurized with a traveling piston powered by the hydrostatic wellbore pressure. The pressurized formation fluid sample is contained under high pressure within a fixed volume chamber for retrieval to the well surface. Multiple collection tanks can be lowered into the wellbore during the same run to sample different zones with minimal rig time. A pair of valves in series along the supply/discharge conduit respective to each tank accommodates extraction of a field sample to verify the sample integrity while still on location. The tanks can be emptied at the well surface with an evacuation pressure so that the fluid sample pressure is maintained above a selected pressure at all times or transported to an analytical laboratory.
Abstract:
In one aspect, an apparatus for use in a wellbore formed in a formation is disclosed that in one embodiment includes a device for supplying a hydraulic fluid under pressure to a common hydraulic line, a first pump in hydraulic communication with the common hydraulic line via a first variable fluid control device, a second pump in hydraulic communication with the common hydraulic line via a second variable fluid control device, and at least one controller that controls flow of the hydraulic fluid from the first variable flow control device to the first pump and the flow of the hydraulic fluid from the second variable flow control device to the second pump to independently control the operation of the first pump and the second pump. In another aspect, the first pump is coupled to a first probe for extracting fluid from the formation and the second pump is coupled to a second probe for extracting the fluid from the formation.
Abstract:
In one aspect, a method of obtaining a fluid from a formation is disclosed that in one embodiment may include: pumping fluid received by a first probe from the formation into the wellbore; pumping fluid received by a second probe from the formation into the wellbore; determining when the fluid received by one of the first and second probes is clean; and pumping the fluid received by the first probe into a sample chamber while collecting the formation fluid received by the second probe from the formation into a storage chamber having an internal pressure less than the pressure of the formation.
Abstract:
The present invention provides an apparatus and method for continuously monitoring the integrity of a pressurized well bore fluid sample collected downhole in an earth boring or well bore. The CDR continuous by measures the temperature and pressure for the down hole sample. Near infrared, mid infrared and visible light analysis is also performed on the small amount of sample to provide an on site analysis of sample properties and contamination level. The onsite analysis comprises determination of gas oil ratio, API gravity and various other parameters which can be estimated by a trained neural network or chemometric equation a flexural mechanical resonator is also provided to measure fluid density and viscosity from which additional parameters can be estimated by a trained neural network or chemometric equation. The sample tank is overpressured or supercharged to obviate adverse pressure drop or other effects of diverting a small sample to the CDR.
Abstract:
A method and apparatus for downhole formation testing is provided for acquisition of a phase intact sample of connate fluid by direct or indirect pumping for filling of pressure containing sample tanks that are removable from a formation testing and sampling instrument for phase intact transportation to a laboratory facility. One or more fluid sample tanks contained within the instrument are filled with connate fluid samples in such manner that during filling of the sample tanks the pressure of the connate fluid is maintained within the predetermined range above the bubble point of the fluid sample. The sample tank incorporates an internal free-floating piston which separates the sample tank into sample containing and pressure evacuation chambers. During indirect pumping a positive displacement piston pump draws fluid from the pressure evacuation chamber and permits formation pressure to shift the separator piston as the first variable volume chamber is filled with a connate fluid sample. The sample tank is provided with a cut-off valve enabling the pressure of the fluid sample to be maintained after the formation testing instrument has been retrieved from the well bore for transportation to a laboratory facility. To compensate for pressure decrease upon cooling of the sample tank and its contents, the piston pump mechanism of the instrument has the capability during direct pumping for increasing the pressure of the sample sufficiently above the bubble point of the sample that any pressure reduction that occurs upon cooling will not decrease the pressure of the fluid sample below its bubble point.