Abstract:
A method for maintaining the mode-locked state of a Fabry-Perot (FP) laser and a WDM light source using the same method for use in WDM optical communication are disclosed. The mode-locked state can be maintained irrespective of temperature change, without use of a temperature controller, by spectrum-slicing the incoherent light generated by a light source element and injecting the spectrum-sliced light to the FP laser, then the FP laser amplifies and outputs only a lasing mode coinciding with the wavelength of the injected light, wherein a lasing-mode interval of the FP laser is set to be less than a 3 dB linewidth of the injected light, so that at least one lasing mode exists inside the 3 dB linewidth of the injected light irrespective of changes in external temperature.
Abstract:
An electric charging device for a portable terminal includes a charging circuit and a switching unit electrically connected with the charging circuit, in which the switching unit turns on/off power supplied to the charging circuit according to whether the electric charging device is connected to the portable terminal or a battery cradle for the portable terminal. The electric charging device can reduce unnecessary power consumption by being disconnected from the external power source when not being connected to the portable terminal or the battery cradle. Moreover, the electric charging device itself has a power saving function by being disconnected from the external power source when not being connected to the portable terminal or the battery cradle.
Abstract:
Disclosed is a method for maintaining wavelength-locking of a Fabry-Perot laser regardless of a change of external temperature even though a temperature controller is not used, and a wavelength division multiplexing (WDM) light source using the method, as an economical light source used in a WDM optical communication field. The WDM light source comprises a Fabry-Perot laser for injecting spectrum-spliced incoherent light to amplify and output only an oscillation mode matching with a wavelength of the injected light, and a bias controlling unit for adjusting a bias current supplied to the Fabry-Perot laser to a value adjacent to a threshold current of the Fabry-Perot laser, whose threshold current is changed according to a temperature and a relationship between the injected light changed depending to a temperature and a wavelength of the oscillation mode. Therefore, the bias current having a value adjacent to the threshold current of the Fabry-Perot laser is supplied to the Fabry-Perot laser, so that the Fabry-Perot laser can maintain an excellent transmission characteristic regardless of a change of temperature even though a temperature controller is not used.
Abstract:
A multi-wavelength optical transmitter which multiplexes a plurality of channels having different wavelengths into an optical signal for output includes lasers for generating mode-locked channels by corresponding incoherent light received in the lasers. The transmitter also has a semiconductor optical amplifier for amplifying, while in a gain saturation state, the optical signal multiplexed by the multiplexer/demultiplexer. Light from a broadband light source is directed by a circulator to the multiplexer/demultiplexer for demultiplexing among the lasers. Light back from the lasers is multiplexed and then directed by the circulator and amplified by a semiconductor optical amplifier for output external to the transmitter.