Abstract:
An optical transmission device includes: a selector configured to select a wavelength of a signal to be transmitted to an optical transmission line and output a wavelength-multiplexed signal; an adjustor configured to control a power level of the wavelength-multiplexed signal; and a controller configured to control the adjustor or the selector, wherein the selector selects a wavelength of an optical signal in a second wavelength band different from an existing first wavelength band, and when the second wavelength band is added to or removed from the optical transmission line, the controller controls power of the wavelength-multiplexed signal in the second wavelength band at a slower speed than power control in the first wavelength band.
Abstract:
An optical amplifier is provided which can suppress, without measuring signal beam power at individual wavelengths, wavelength-dependence of gain with respect to a signal beam into which multiple signal beams having respective wavelengths different from each other are multiplexed. The optical amplifier (100) according to the present invention can suppress wavelength-dependence of gain by giving loss in accordance with a linear-loss slope to an amplified signal beam. The optical amplifier is provided with a variable tilt equalizer (11) for varying a loss slope value representing the slope of the loss slope and a tilt control unit (22) for controlling a loss slope value of the variable tilt equalizer.
Abstract:
A method is described in which a database is monitored. The database includes information specifying allocations of time periods in which a first optical carrier corresponding to a first optical channel will not be supplying encoded first data into output optical signals being transmitted from a first node to a second node. An idler carrier being amplified stimulated emission light having a frequency corresponding to the first optical channel is supplied into the output optical signals transmitted from the first node to the second node during the time periods in which the first optical carrier will not be supplying encoded first data into the output optical signals.
Abstract:
[Problem] To provide an optical transmission/reception device, an optical communication system, an optical communication method, and a program which are capable of securing the confidentiality of information included in an optical signal even when the optical signal is transferred to a device that is not an original transmission destination device.[Solution] This optical transmission/reception device is provided with: a wave separation unit for receiving a wavelength-multiplexed optical signal and separating the same into a plurality of optical signals; a plurality of reception units for receiving each of the plurality of optical signals separated by the wave separation unit; a plurality of output units for outputting optical signals differing in wavelength from each other; a control unit for requesting, in response to the inclusion in the received wavelength-multiplexed optical signal of an optical signal to which a prescribed process has been applied, that a prescribed change be applied to the optical signal outputted by at least one of the plurality of output units; and a wave combining unit for combining the plurality of optical signals outputted from the plurality of output units and outputting the combined signal.
Abstract:
A transmission loss measurement device includes: a first monitor configured to measure a first optical power of a specific wavelength among wavelength-multiplexed light amplified by a Raman amplifier according to a power of pump light, the wavelength-multiplexed light being transmitted to an optical transmission line; a second monitor configured to measure a second optical power of the specific wavelength among the wavelength-multiplexed light received from the optical transmission line; a storage device configured to store a procedure for calculate a transmission line loss; and a processor configured to execute the procedure by: calculating a gain by the Raman amplifier, based on the power of the pump light; calculating the transmission line loss based on the first optical power, the second optical power, and the gain by the Raman amplifier; and correcting the transmission line loss according to a change of a number of wavelengths of the wavelength-multiplexed light.
Abstract:
An optical transmitter includes an amplifying unit, a monitor, an identifying unit, and a controlling unit. The amplifying unit amplifies an optical signal in which an optical packet signal is mixed in optical path signals. The monitor monitors power of the optical signal on an input stage and an output stage of the optical amplifying unit, respectively. The identifying unit identifies an optical packet signal section on the input stage side based on the monitoring result on the input stage side, and identifies an optical packet signal section on the output stage side based on the monitoring result on the output stage side. The controlling unit compares the power of the identified section on the input stage side with the power of the identified section on the output stage side, and controls an amplification factor of the amplifying unit based on a power difference resulting from the comparison.
Abstract:
Methods and systems for transient gain cancellation at an optical amplifier may involve generating saturating light that is introduced in a reverse direction to a transmission direction at a doped fiber amplification element. The doped fiber amplification element may amplify an input optical signal having a plurality of wavelengths as well as the saturating light. The saturating light may be regulated by a control circuit to counteract transient gain effects of add/drop events in the input optical signal. The saturated light may be filtered to achieve a desired spectral profile.
Abstract:
An apparatus comprising a processor configured to calculate a noise figure of an optical amplifier for a plurality of selected wavelength channels in a partial-fill scenario that accounts for channel loading. The noise figure is calculated using a plurality of corresponding noise figure correction values at a plurality of wavelengths based on an effective number of channels.
Abstract:
A transmitter to be added or reduced turns ON/OFF an optical output. A relay station and a receiving terminal station acquire the amount of fluctuation of the optical output of the received signal light when the optical output of the added transmitter is turned ON and OFF. From the amount of fluctuation of the optical output, the number of wavelengths after the addition or reduction is acquired. Without an OSC signal, each station may be informed of the number of wavelengths. Therefore, the configuration for transmitting and receiving the OSC signal is not requested, thereby reducing the total cost, appropriately controlling the gain of the optical amplifier, and successfully maintaining transmission quality.
Abstract:
An optical transmitter includes a dummy optical source, a polarized wave beam coupler, and an auto gain control (AGC)-system amplifier. The dummy optical source outputs, out of an optical signal in which an optical path signal and an optical packet signal are mixed, a dummy signal having a wavelength identical to that of the optical packet signal. The polarized wave beam coupler multiplexes the dummy signal with the optical signal so that the dummy signal is orthogonal to the optical signal so as to output an output signal. The AGC-system amplifier inputs the output signal, and amplifies the output signal with a predetermined amplification factor corresponding to a power difference between input power and output power of an optical amplifier.