Abstract:
A method and system for managing stored data on a computer network organizes data into logical volumes, and each logical volume has a friendly name associated with it. A domain controller keeps track of the friendly names of the logical volumes and associates those friendly names with the actual physical paths of the logical volumes. When a client computer on the network wishes to access a logical volume, it sends a look-up request having the friendly name to the domain controller. The domain controller may fulfill the request by sending the path of the logical volume to the client computer.
Abstract:
The innovation enables generation of an index of cloud-based resources (e.g., data, services, applications). The index can be used to retrieve a subset of the cloud-based resources by analyzing a user-generated or standing query. ‘Identity’ and contextual factors can be incorporated to enable rich indexing as well as subsequent retrieval of meaningful resources. The cloud-based resources can be indexed and/or searched in accordance with diverse criteria including, but not limited to, type, size, data created, date modified, author core identity, object size, etc. As well, the innovation can provide for dynamically indexing and/or searching resources in accordance with current contextual factors including, but not limited to, author current acting capacity (e.g., current identity), current engaged activity of a user, location, time, date, etc. All of these criteria can facilitate indexing and categorizing of the resources for later retrieval and rendering via a rich index view.
Abstract:
Innovative aspects provided herein pertain to digital rights management (DRM) and/or enforcement in conjunction with remote network clouds and services. Digital rights management licenses/rights/policies can be applied to personal files to facilitate worry free remote storage and/or file sharing. These rights can be identity-centric rather than machine centric, thereby facilitating access and usage from any network device anywhere. Various mechanisms are also disclosed to deter assorted uses of content and/or encourage rights acquisition as an alterative or in addition to technologically prohibitive means. Additionally, a system and method are provided that can afford a frictionless marketplace for file distribution, wherein content is protected and freely distributed and identity-centric rights can be purchased to access the content.
Abstract:
A system recovery method and framework for backing up and restoring a system that cannot reboot. The framework defines a common process, environment, and syntax, whereby backup programs integrate with this framework by collecting and writing appropriate information to be used during system recovery in the proper format. The format is a System Information File, a text file that specifies the hard disk state of the system and the location of key partitions where key components of the operating system are located. The file also includes instructions for specifying programs to launch during the restore phase, and any commands that need to be run in error handling cases. The file also includes or references any additional drivers or files to copy to assist in the restore process. A framework for restoring is also provided, and includes reading the file to restore the disk partition state, creating a common environment, and configuring (initializing) the common environment. When the environment is configured, the programs specified in the file are run to restore the remainder of the system.
Abstract:
A method and system for backing up and restoring a system that cannot reboot in an automatic and efficient manner. A backup component copies and stores the state that defines the configuration of the computer system by obtaining and preserving the underlying description of the system. The backed-up state information includes the disk structure and layout. Also backed up is the information specifying what to execute during restore phases, including programs to copy and execute, any error handling, and any special driver files to load. A restore component operates in a first phase to use the backed-up configuration information to compare with the current state of a new system, and the disk and volume state are restored according to the saved information. Once the underlying system state is restored, an environment is created by copying a set of files required to run the programs that will restore the remainder of the data. A second restore phase configures the environment for launching a restore program by detecting and installing drivers and support for devices installed on the system. The restore program or programs are then run according to the instructions that were saved therewith during the backup phase, to restore the remainder of the data.
Abstract:
A system and method for purposing a computing device is disclosed. The computing devices in a network are organized into groups referred to as Pods, each Pod of computing devices further comprising an aggregation node. The aggregation node monitors and controls the computing devices in the Pod. The aggregation node is used to copy a system image from the pristine partition of another computer device or from a library of system images to a target partition of the computer to be repurposed. Because the computing devices in the network are organized into Pods, with each Pod having an aggregation node, there is no single point of failure for the entire management and control of the network. The aggregation nodes for each Pod in the network can communicate with one another to most efficiently allocate resources among the various tasks to be performed by the computing resources in the network. Computing devices in the network can be repurposed and/or reassigned to different Pods based on the various criteria.
Abstract:
A method and system for managing stored data on a computer network organizes data into logical volumes, and each logical volume has a friendly name associated with it. A domain controller keeps track of the friendly names of the logical volumes and associates those friendly names with the actual physical paths of the logical volumes. When a client computer on the network wishes to access a logical volume, it sends a look-up request having the friendly name to the domain controller. The domain controller may fulfill the request by sending the path of the logical volume to the client computer.
Abstract:
A system and method that facilitates and effectuates communications between disparate clients that reside in a network topology (e.g., cloud). The system and method provides a component that receives one or more prospective end points, a set of desired communication criteria/characteristics, and desired content extant on one of the clients that reside on network topology. Additionally, the system and method provides a component that establishes communications pathways to one or more prospective end points or to subsequently identified end points to facilitate transfer of desired content from the end point to a requesting client.
Abstract:
The innovation enables generation of an index of cloud-based resources (e.g., data, services, applications). The index can be used to retrieve a subset of the cloud-based resources by analyzing a user-generated or standing query. ‘Identity’ and contextual factors can be incorporated to enable rich indexing as well as subsequent retrieval of meaningful resources. The cloud-based resources can be indexed and/or searched in accordance with diverse criteria including, but not limited to, type, size, data created, date modified, author core identity, object size, etc. As well, the innovation can provide for dynamically indexing and/or searching resources in accordance with current contextual factors including, but not limited to, author current acting capacity (e.g., current identity), current engaged activity of a user, location, time, date, etc. All of these criteria can facilitate indexing and categorizing of the resources for later retrieval and rendering via a rich index view.
Abstract:
A method and system for booting a computer system to a known state at system start-up or in the event of an error or failure while the system is running or operating. The method and system of the invention automatically executes all the necessary procedures to boot the computer system to a known state, without any human intervention. The invention uses information about the state of the computer system during previous boot attempts to determine the logical steps performed to ensure that the system boots to a known state.