Abstract:
Remote appliance activation can be achieved by relaying between radio frequency transmission schemes having different characteristics. A radio receiver receives radio frequency control signals for controlling the appliance. Each existing radio frequency transmitter is specifically designed to transmit wireless radio frequency control signals having receiver characteristics to the radio receiver. A new wireless radio frequency transmitter has transmitter characteristics, at least one of which is different from receiver characteristics. A radio relay learns the receiver characteristics from one of the existing transmitters and learns at least one transmitter characteristic from the new transmitter. Then, when an appliance radio frequency activation command is received from the new transmitter, the radio relay transmits a new radio frequency appliance activation command having the learned receiver characteristics.
Abstract:
The present invention provides a universal remote control. For each channel supported, a mode is initially established as rolling mode. For a fixed code appliance, a fixed code is received and stored, and the mode changed to fixed mode. When an activation request is received, the mode associated with that activation input is examined. If the mode is rolling mode, a sequence of rolling code activation signals is transmitted, each based on one of the plurality of rolling code transmission schemes. If the mode is fixed mode, at least one activation signal is transmitted based on a fixed code transmission scheme and including the stored fixed code.
Abstract:
A light apparatus is provided having a housing and an array of light emitting units integrally formed within the housing, each light emitting unit containing at least one light emitting diode (LED). The apparatus further includes a processor in communication with the LEDs in each light emitting unit, and user input controls in communication with the processor for controlling the light emitting units, such that a light color displayed by each light emitting unit can vary with time. Methods for controlling the intensity of an LED are also provided.
Abstract:
A universal in-vehicle remote control automatically assists in appliance activation configuration. The appliance responds to a radio frequency activation signal having characteristics represented by one of a plurality of activation schemes. The user is automatically prompted to select one of a plurality of subsets of possible activation schemes. For each activation scheme in the subset, an activation signal is transmitted. User input is received indicating whether or not at least one transmitted activation signal successfully activates the appliance. If the user input indicates success, data representing the activation scheme is associated with a user activation input channel.
Abstract:
A universal remote control transmits one of a plurality of sequences of activation signals when activated. The remote control includes a receiver and a transmitter. At least one wireless channel is associated with a user activation input. Memory holds data describing rolling code transmission schemes and fixed code transmission schemes. Control logic maintains a channel mode set initially to a rolling code mode. The channel mode changes to one of at least one fixed code mode if the channel is trained to a fixed code. In response to an assertion of the user activation input for a particular channel, the control logic generates and transmits an activation signal based on each of a plurality of transmission schemes associated with the mode programmed for the channel.