Abstract:
Processing method of a digital image to filter red and/or golden eye artifacts, the digital image comprising a plurality of pixel each comprising at least one digital value represented on a plurality of bits, the method comprising: a step of selecting at least one patch of pixels of the digital image comprising pixels potentially representative of a red and/or golden eye artifact; a step of classifying the at least one patch of pixels as “eye” or “non-eye”; a step of filtering said potentially representative pixels if said patch of pixels is classified as “eye”; wherein the classifying step comprises the operations of: converting the digital values of said patch of pixels into a Gray Code representation, overall obtaining a plurality of bit maps from said patch of pixels, each bit map being associated with a respective bit of said Gray Code; an operation of individually comparing said bit maps with corresponding bit map models belonging to a patch classifier produced by a statistical analysis of bit maps obtained by converting patches of pixels of digital images containing or not red and/or golden eye artifacts into said Gray Code representation.
Abstract:
A method for transforming a matrix representation of pixels of an image into a vector representation of the image involves partition of the image into contiguous homogeneous regions by applying a watershed type morphologic algorithm to the matrix representation of pixels and identifying the contours of the contiguous homogeneous regions by applying a vector code contouring algorithm of the chain-code type to every region. By selecting quantization level of the gradient, improved image quality, dimensions and noise are achieved.
Abstract:
An embodiment of an integrated scanner apparatus, includes a support surface for objects to be scanned, a scanner unit to perform a scanning movement relative to the support surface to capture images of portions of objects to be scanned, and a printer unit carried by a carriage mobile with respect to said support surface, wherein said scanner unit is carried by said carriage carrying said printer unit to be imparted said scanning movement by said carriage.
Abstract:
An image processing apparatus suitable for processing a digital image in YCrCb color space, the image having an initial luminance plane Y and two initial Cr, Cb chrominance planes, the processing apparatus including a first block that receives the initial luminance plane Y of the digital image and processes and modifies the initial luminance plane Y in order to provide a modified luminance plane Y in output; a color artifact correction block, operating in parallel with the first block, the correction block receiving the initial planes Y, Cr, Cb of the image and modifying the initial chrominance planes Cr and Cb through a pixel by pixel processing approach with a mobile working window, the correction block having a false colors correction sub-block and a purple fringing correction sub-block, or both, the sub-blocks structured to modify values of the initial Cr, Cb chrominance planes based on information contained in the initial Cr, Cb chrominance planes and also based on information contained in the initial luminance plane Y.
Abstract:
A digital camera for capturing and processing images of different resolutions and a corresponding method for down-scaling a digital image are provided. The method includes forming an image of a real scene on an image sensor that is made up of a plurality of pixels arranged in a matrix. The method further includes addressing and reading pixels in the matrix to obtain analog quantities related to the pixels luminance values, converting the analog quantities from the pixels matrix into digital values, and processing the digital values to obtain a data file representing the image of the real scene. To reduce computation time and power consumption, the addressing and reading of the pixels includes selecting a group of pixels from the matrix, and storing the analog quantities related to the pixels of the selected group of pixels into an analog storing circuit. The stored analog quantities are averaged to obtain an analog quantity corresponding to an average pixel luminance value.
Abstract:
A digital camera includes a sensor (205) for sensing an image and producing a first signal. A Bayer pattern producer (210) is coupled to the sensor and structured to produce a Bayer pattern from the first signal. The Bayer pattern is then split (212) into separate color channels. A color interpolator (214) is structured to perform a modification on only one of the color channels produced by the splitter (212). A compressor (220) then compresses the interpolated and non-interpolated color channels into a compressed image. An output interface (226) facilitates remote transmission of the compressed image over a communication channel. This communication may be made over a network to a server that operates in conjunction with the digital camera to perform certain functions, like image processing, manipulation, storage and communication, as directed by a user of the digital camera.
Abstract:
A raster to vector conversion method of an initial digital image including a pixel matrix, includes generating a digital image divided into polygons by dividing the initial digital image into a plurality of base triangles and defining similarity criteria depending on at least one parameter. The conversion method also includes an iterative operation to process the digital image divided into polygons, selecting pairs of polygons adjacent to each other and to satisfy the similarity criteria and merging together the selected polygons.