Abstract:
A liquid crystal display device includes: a component substrate including a transistor device; an opposing substrate disposed so as to face the component substrate through a liquid crystal layer; a back light disposed on a side of the component substrate located opposite to the opposing substrate; first and second measurement portions formed on a surface of the component substrate and the opposing substrate, respectively, located on the liquid crystal layer side and used for measuring a difference between bonding positions of the component substrate and the opposing substrate; a measurement opening portion disposed on the second measurement portion side; and a light shielding layer disposed between the component substrate and the second measurement portion and preventing transmission of light from the back light through the measurement opening portion.
Abstract:
Provided is a liquid crystal display device including: a pair of transparent substrates including a liquid crystal layer interposed therebetween, wherein, at the liquid crystal layer side of one of the pair of transparent substrates, a plurality of scan lines and a plurality of signal lines are arranged in a display area in a matrix, first electrodes are formed in pixel areas partitioned by the scan lines and the signal lines, a second electrode is formed on the first electrodes with an insulating film interposed therebetween over at least the display area, a common line is formed outside the display area, and the second electrode is electrically connected to the common line via a low-resistance line which is formed along at least one side of the display area.
Abstract:
A light deflector includes: a movable plate; an elastic support section having a first end coupled to the movable plate and adapted to support the movable plate rotatably around a predetermined axis; a support member coupled to a second end of the elastic support section; and a light absorbing section having a light absorbing property, wherein the elastic support section has an upper surface, a lower surface, and at least one side surfaces, each of the side surfaces being formed of one or more tilted surfaces existing outside either one of the upper surface and the lower surface, and the light absorbing section is disposed on the upper surface and the at least one side surfaces of the elastic support section.
Abstract:
Methods and systems are described for improving a data at a receiver using one or more signal peak detectors. A signal is received having an initial signal level from the transmitter, the signal having a long bit and a short bit. The initial signal voltage of the signal is measured using a signal peak detector. A pre-emphasis value is determined using the signal voltage and is communicated to the transmitter, causing the transmitter to transmit the signal using an adjusted signal level. A second signal voltage of the initial signal is measured using a second signal peak detector, the second signal voltage being used to determine the pre-emphasis value. In another embodiment, a state machine having data relating to appropriate pre-emphasis is used in determining the pre-emphasis value. In another embodiment, one peak detector is used to measure the long bit and another peak detector is used to measure the short bit. In another embodiment, the signal does not have associated link training data.
Abstract:
A simplified docking station arranged to couple together a media source device and a media sink device is disclosed. The docking station is configured to accept power from the media source device for powering the docking station itself and for providing power to the media sink device.
Abstract:
Methods and systems are described for displaying video data after a hot plug event during a start-up dead period. In particular, approaches for receiving data, determining whether link training can be performed and, if not, self-configuring a receiver to display the information in a proper format even during the dead period.
Abstract:
A receiver is enabled to perform self-configuration of the main data link to receive and display video data. A video data signal is received through a data link having multiple channels or lanes at a specific bit rate. No link configuration data normally associated with the video signal is received. It is then determined which one or more of the channels of the data link are active in transmitting the data signal. A symbol pattern in the data signal is then identified. The symbol rate of the data signal is then synchronized with the local clock frequency. The local clock frequency is set to correspond to the actual bit rate of the data signal, thereby creating a signal-based clock frequency. This local clock frequency is set using only the data signal since no link configuration data associated with the signal is received. In this manner, the receiver configures or trains the link itself using only the video data signal and therefore, the receiver may be described as self-sufficient.
Abstract:
Methods and systems are described for displaying enabling the transmission, formatting, and display of multimedia data after a hot plug event during a start-up dead period. In particular, approaches for transmission, formatting, and display of multimedia data in the absence or non-operation of a hot plug detect system or signal, so that multimedia information can be displayed in a proper format even during the dead period when no hot plug detect signal is received.
Abstract:
Methods and systems are described for enabling display system power saving during the operation of display devices. An integrated circuit package includes input interface circuitry configured to receive an audio-video data stream having a video signal and timing information and timing extraction circuitry that can identify blanking patterns for the video signal. The package includes timing control circuitry configured to implement a power saving process during the blanking periods of the video signal. The invention further includes methods that support the operation of power saving processes.
Abstract:
Methods, chips, systems, computer program products and data structures are described for conducting modification of color video signals from a first color format associated with an originating format to a second format compatible with a display media of a display device.