Abstract:
A memory circuit (10) provides reduced array sense amplifier circuitry (20, 22) for a memory cell array (24, 26, 28, 30), which has a plurality of memory cells (340) for electrically storing data. A plurality of bitlines (260) are associated with a memory cell array (26) for carrying data to and from the memory cells therein. At least one sense amplifier circuit (16) includes circuitry (332, 334) for addressing selected memory cells via column select lines, and for communicating with an external source of address signals. A local sense amplifier circuit (20, 22) includes circuitry (262, 266) for communicating with the sense amplifier circuit through the selected bitlines. The local sense amplifier circuit also includes circuitry (234, 238) for communicating with other bitlines (232, 236) for addressing other memory cells (28), and further for transmitting data to and from the other memory cells along the selected bitlines, in cooperation with the sense amplifier (16).
Abstract:
A selectable low power signal line (10) is provided that includes a driver circuit (12) connected to receive an input signal for transmission and to receive a mode select signal (SELECT). The driver circuit (12) has a low power mode and a full power mode selectable responsive to the mode select signal (SELECT). The driver circuit (12) is operable, when in the full power mode, to drive an output signal at a full swing of the input signal. When in the low power mode, the driver circuit (12) is operable to drive the output signal at a fraction of the full swing of the input signal. A physical signal line (14) is connected to receive the output signal of the driver circuit (12) and to carry the output signal. A receiver circuit (16) is connected to receive the signal on the physical signal line (14) and is also connected to receive the mode select signal (SELECT). The receiver circuit (16) has a low power and full power mode selectable responsive to the mode select signal (SELECT). The receiver circuit (16) is operable, when in the full power mode, to drive an output signal at a full swing of the signal on the physical signal line (14). When in the low power mode, the receiver circuit (16) is operable to convert the signal on the physical signal line (14) from a fraction of the full swing of the input signal to a full swing of the input signal and to drive the output signal at the full swing.
Abstract:
A memory circuit for operating synchronously with a system clock signal is designed with a memory array (250, 252, 254, 256) having a plurality of memory cells arranged in rows and columns. Each column decode circuit of a plurality of column decode circuits (502) produces a select signal at a respective column select line (108) in response to a first column address signal. A plurality of sense amplifier circuits (202) is arranged in groups. Each sense amplifier circuit is coupled to a respective column of memory cells. Each sense amplifier circuit includes a select transistor for coupling the sense amplifier to a respective data line (203). A control terminal of each select transistor of a group of sense amplifier circuits is connected to the respective column select line. A data sequence circuit (218) is coupled to receive four data bits from four respective data lines (210, 212, 214, 216) in response to a first cycle of the system clock signal. The data sequence circuit produces four ordered data bits in response to a control signal and a second column address signal. A register circuit (220) is coupled to receive the four ordered data bits. The register circuit produces a sequence of the four ordered data bits in response to a plurality of cycles of the system clock signal after the first cycle of the system clock signal.