Abstract:
There are provided a holding strap, methods of making the same, and methods using such holding strap for tying down objects on a flatbed of a vehicle, retaining underground tanks, or lifting electrodes out of an electrolytic cell. The holding strap includes a chemically pre-treated strap component, an epoxy resin chemically bonded to the pre-treated strap component, and a hook component comprising a cavity that is configured and sized to receive at least a portion of the strap component, the epoxy resin being chemically bonded to internal surfaces of the cavity, so as to form the holding strap.
Abstract:
A contact bar and related techniques allow enhanced electrolytic refining of metals, e.g. avoiding or reducing electrical short circuits. The contact bar is adapted to rest on an insulating capping board for contacting symmetrical electrodes to provide locations for electrical contact therewith. The contact bar includes a central portion laying on the capping board and branch portions extending laterally outward from the central portion, such that the branch portions fit in between seats of the capping board. The contact bar may include a retention member enabling to reduce lateral movement of the electrodes, and may include a plurality of apertures to engage corresponding holding arms of the capping board. There may be a plurality of adjacent similar contact bar segments.
Abstract:
A hook, a hold down strap and a method for holding down an underground tank. The hook includes a base portion connectable to the hold down strap; a curved portion extending from the base portion and defining a concave receiving area having an entrance sized and configured for receiving an anchor element. The hook includes at least one hooking aid member being a flexible member or an extension member. The flexible member extends across the entrance of the concave receiving area and is sized and configured to bend from a closed position to an open position such that, when the anchor element traverses the entrance, the flexible member bends from the closed position toward the concave receiving area to the open position, thus allowing the anchor element to enter the concave receiving area. The extension member extends from the curved portion beyond the entrance of the concave receiving area.
Abstract:
There is provided an electrolytic tank assembly facilitating alignment and levelling of an electrolytic tank with respect to adjacent electrolytic tank. A levelling assembly can include a plurality of adjustable levelling mechanisms being independently actuable to cause upward or downward movement of the electrolytic tank. A sole assembly can include friction and sliding soles for controlling transversal movement of an electrolytic tank with respect to support beams onto which the tank is supported. A strap assembly comprising a vertically extending strap and a connector provided at an end of the vertically extending strap can be connected to each adjustable levelling mechanism of the levelling assembly. Various type of connectors can be provided at the other end of the strap to provide anchorage to accessory for operation, lifting, maintenance, etc.
Abstract:
An anchor assembly and related system for holding an underground tank below a ground level, including a lightweight anchor base defining a slot, and a retention mechanism that is locatable at multiple locations along the slot of the anchor base to securely maintain a strap assembly in place. The system can include the anchor assembly and the strap assembly, with the retention mechanism of the anchor assembly being movable along the slot of the anchor base to facilitate placement and adjustment of the strap assembly with respect to the anchor base.
Abstract:
There is provided an electrolytic tank assembly facilitating alignment and levelling of an electrolytic tank with respect to adjacent electrolytic tank. A levelling assembly can include a plurality of adjustable levelling mechanisms being independently actuable to cause upward or downward movement of the electrolytic tank. A sole assembly can include friction and sliding soles for controlling transversal movement of an electrolytic tank with respect to support beams onto which the tank is supported. A strap assembly comprising a vertically extending strap and a connector provided at an end of the vertically extending strap can be connected to each adjustable levelling mechanism of the levelling assembly. Various type of connectors can be provided at the other end of the strap to provide anchorage to accessory for operation, lifting, maintenance, etc.
Abstract:
There is provided an electrolytic tank assembly facilitating alignment and levelling of an electrolytic tank with respect to adjacent electrolytic tank. A levelling assembly can include a plurality of adjustable levelling mechanisms being independently actuable to cause upward or downward movement of the electrolytic tank. A sole assembly can include friction and sliding soles for controlling transversal movement of an electrolytic tank with respect to support beams onto which the tank is supported. A strap assembly comprising a vertically extending strap and a connector provided at an end of the vertically extending strap can be connected to each adjustable levelling mechanism of the levelling assembly. Various type of connectors can be provided at the other end of the strap to provide anchorage to accessory for operation, lifting, maintenance, etc.
Abstract:
Various anchors and methods for anchoring an underground storage tank are provided. The anchor includes a base and at least one retention mechanism connected to the base for retaining various configurations of hooks and straps for holding the tank. The retention mechanism includes an opening and a retention member that is configured to open or close the opening by displacing or collapsing said retention member. The anchor may include a composite base having a footing and a spine extending upwardly from the footing so as to define footing portions on either side of the spine. The footing and the spine may have a composite composition that includes a matrix material and a reinforcement structure embedded within the matrix material. The retention mechanism may be connected to the spine of the composite base for retaining a hook for anchoring the underground storage tank.
Abstract:
Various anchors and methods for anchoring an underground storage tank are provided. The anchor includes a base and at least one retention mechanism connected to the base for retaining various configurations of hooks and straps for holding the tank. The retention mechanism includes an opening and a retention member that is configured to open or close the opening by displacing or collapsing said retention member. The anchor may include a composite base having a footing and a spine extending upwardly from the footing so as to define footing portions on either side of the spine. The footing and the spine may have a composite composition that includes a matrix material and a reinforcement structure embedded within the matrix material. The retention mechanism may be connected to the spine of the composite base for retaining a hook for anchoring the underground storage tank.
Abstract:
An assembly for use in refining metals includes two adjacent capping board segments defining a joint interface there-between, a contact bar that may be a contact bar segment and is sized and configured to lay on the two capping boards and to span across the joint interface, and two engagement mechanisms provided on respective sides of the joint interface, to hold the capping board segments together. Each engagement mechanism may include a projecting anchor element and a retaining cavity sized and configured to receive a corresponding projecting anchor element. The contact bar may include the projecting anchor elements and the capping board segments may include the retaining cavities. Methods and uses of such contact bars and capping board segments are also provided for hydrometallurgical refining operations.