Abstract:
A lead-free primer energetic composition including Cyanuric Triazide (60%), Tetracene (5%), Barium Nitrate (20%) and Antimony Trisulfide (15%) is produced. The lead-free primer energetic composition is used to construct a primary detonator including a transfer charge of Cyanuric Triazide, which produces a further initiation train that may subsequently detonate a secondary explosive, i.e., HDX, RDX, or a pyrotechnic device.
Abstract:
1-Methyl-2,4,5-Trinitroimidazole is synthesized starting from 4-nitroimidazole using stepwise nitration method and further methylation using Dimethylsulphate. It is relatively insensitive to impact and its thermal stability is excellent. The calculated detonation properties indicate that its performance is about 30% better than TATB. It can be prepared easily, with reasonable yield, starting from commercially available Imidazole. Results from impact sensitivity, friction sensitivity, time-to-explosion temperature and vacuum stability tests indicate that it is less sensitive than both RDX and HMX. The good oxygen balance and measured heat of formation data of this material indicate that its propellant performance should be good.
Abstract:
A novel cyclotetraphosphazene compound, 1,5-diamino-1,3,3,5,7,7-hexaazidocyclotetraphosphazene, is disclosed which has application as an energetic compound. Also disclosed is a method of preparing the compound.
Abstract:
Processes and compositions for nitration of N-substituted isowurtzitane compounds with concentrated nitric acid at elevated temperatures to form HNIW and recovery thereof with high yields and purities. Polymorphic conversions to the epsilon HNIW crystal form at quanititative yields are also described.
Abstract:
Azabicylobutane can be produced by reacting azetidines under aqueous conditions to eliminate aza and 3-position substituents to effect cyclization. New azetidinyl compounds are described which can be intermediates in the preparation of the azabicyclobutane.
Abstract:
Processes and compositions for nitration of N-substituted isowurtzitane compounds with concentrated nitric acid at elevated temperatures to form HNIW and recovery of gamma HNIW with high yields and purities. Polymorphic conversion of HNIW crystals to epsilon HNIW crystals is also disclosed.
Abstract:
TNAZ can be prepared directly from N-tertiarybutyl-3,3-dinitroazetidine compounds. The compounds may be in the form of the tertiary amine or the quaternary amine. The reaction is in the presence of acetic anhydride and nitrate ions. It gives high yields and uses mild conditions.