Abstract:
Methods, computer software, and systems for analyzing a biological specimen (e.g., a cytological specimen) on a slide is provided. Magnified image data frames of the biological specimen are taken at different locations on the slide. An object that is not entirely contained within at least one of the image data frames is identified, and complementary portions of the object respectively located in different ones of the image data frames are matched. A fully integrated object is created from the matched object portions. Attributes of the integrated object are then analyzed.
Abstract:
An efficient and reliable method and apparatus is disclosed that finds a reference point of an object profile within an image when the object is of an unknown size. The object profile is modeled using a synthetic labeled-projection model, which in conjunction with the image, is projected over a portion of the image of the object profile to derive a histogram. The histogram is normalized and a maximum of a first derivative of the histogram is defined for that position. The position of the labeled-projection model is moved relative to the image, and the process is repeated until a selected portion of the image has been examined. The first derivative of the normalized labeled projection is greatest when a feature of the image and the feature denoted by a specific synthetic label of the labeled-projection model are aligned. The method and apparatus can locate the center of the object with reliability, because use of the labeled-projection model and the histogram minimizes the * effects of image artifacts. Further, the method decreases computational time, and thus, increases performance speed.