Abstract:
A method is provided for dividing a pattern into a plurality of sub-patterns, each sub-pattern being adapted for use with an image search method that can provide a plurality of sub-pattern search results. The method represents the pattern as a plurality of feature points, generates candidate partitions of the plurality of feature points, and then scores the candidate partitions by examining characteristics of each potential sub-pattern of each candidate partition. The highest-scoring partition is selected, and then it is applied to the plurality of feature points, creating one or more sub-pluralities of features. The invention advantageously provides a plurality of sub-patterns where each sub-pattern contains enough information to be located with a feature-based search method, where that information has been pre-evaluated as being useful and particularly adapted for running feature-based searches.
Abstract:
Digital image processing methods are applied to an image of a semiconductor interconnection pad to preprocess the image prior to an inspection or registration. An image of a semiconductor pads exhibiting spatial patterns from structure, texture or features are filtered without affecting features in the image not associated with structure or texture. The filtered image is inspected in a probe mark inspection operation.
Abstract:
Inspection of solder paste on a printed circuit board using a before printing image (pre-image) to normalize an after printing image (post-image) of the printed circuit board. Existing lighting and optics used for alignment of the screen printing stencil to the printed circuit board are used for the solder paste inspection. A stencil in the screen printing process is also inspected using a before printing image (pre) to normalize an after printing image (post) of the stencil.
Abstract:
Digital image processing methods are applied to an image of a semiconductor interconnection pad to preprocess the image prior to an inspection or registration. An image of a semiconductor pads exhibiting spatial patterns from structure, texture or features are filtered without affecting features in the image not associated with structure or texture. The filtered image is inspected in a probe mark inspection operation.
Abstract:
Digital image processing methods are applied to an image of a semiconductor interconnection pad to preprocess the image prior to an inspection or registration. An image of a semiconductor pads exhibiting spatial patterns from structure, texture or features are filtered without affecting features in the image not associated with structure or texture. The filtered image is inspected in a probe mark inspection operation.
Abstract:
A method is provided for locating features of an object using varied lighting. An object is illuminated and a first digital image of the object is acquired. An illumination of the object is varied and a second digital image of the object is acquired while a camera and the object are in a same position as the camera and the object were during the acquiring of the first digital image. One of the first and the second digital image is subtracted from another of the first and the second digital image to produce a difference image. At least one feature of the object is located based on the difference image.
Abstract:
A method is provided for obtaining a focused image of an object in an application of machine vision in an optical inspection system. A coarse focus setting is first obtained by maximizing a coarse feature sharpness measurement performed on an image of the object of inspection. Then, a fine focus setting is obtained by maximizing a fine feature sharpness measurement performed on a portion of an image of the object of inspection. Finally, the fine focused image can be further analyzed, inspected, or otherwise processed.
Abstract:
Inspection of solder paste on a printed circuit board using a before printing image (pre-application image) to normalize an after printing image (post-application image) of the printed circuit board. Existing lighting and optics used for alignment of the screen-printing stencil to the printed circuit board are used for the solder paste inspection. An embodiment is described wherein pad regions of the printed circuit board are inspected for information about the solder paste applied on the pad regions of the printed circuit board. A stencil in the screen printing process is also inspected using a before printing image (pre-application) to normalize an after printing image (post-application) of the stencil.
Abstract:
The invention automatically inspects the bond of a wire to a contact pad on a semiconductor chip. The apparatus includes a movable platform for holding semiconductor chips situated in lead frames; a video camera for sensing images; illumination means for illuminating a chip in a lead frame; an image processor to digitize and analyze the images; a bonding mechanism; and a host controller electronically connected to bonding mechanism, movable platform, video camera, and image processor. Image processor locates a bond on a pad in a digitized image and provides a first nominal center of ball bond image. The invention aligns the center of a polar coordinate transform image having one or more segments with the nominal center of ball bond image and evaluates ball bond image using the polar coordinate transform image to create a polar projection histogram array and store it. An edge filter is applied to histogram array to detect peaks and store their number and values. Polar coordinate transform image is aligned with a next nominal ball center location until a predetermined number of potential ball center locations is exhausted. The maximum peak in the list of stored peaks is selected as the radius of bond from which the size and position of bond is computed and reported to host controller for further action.
Abstract:
This invention provides a method and apparatus for automatically locating the bond of a wire to a lead flame and semiconductor chip or similar device as an in-process operation to facilitate in-process inspection. The apparatus includes a wire bonding machine, or similar apparatus, having a movable platform such as an X-Y table for holding semiconductor chips situated in lead frames; a video camera or other optical sensing or imaging device for generating images, which camera is typically positioned over the target chip and lead flame to be bonded; illumination means for illuminating the chip in a lead flame; an image processor capable of digitizing and analyzing the optically sensed images; a bonding mechanism; and a host controller connected to the bonding mechanism, the movable platform, the camera and the image processor. The apparatus generates and stores a pre-bond digital image of the semiconductor chip in the lead flame before bonding has occurred; connects one or more wires between the chip and lead frame by any of a number of means such as ultrasonic bonding, heat bonding, conductive glue bonding or other means; generates and stores a post-bond digital image of the now-bonded chip in its lead frame; registers the pre-bond and post-bond stored digital images so that analysis can be done; and permits inspection of the results of the wire bonds according to appropriate criteria.