Abstract:
The current disclosure is directed to a method for determining an improved design for a progressive spectacle lens. Further, there are provided a method for manufacturing a progressive spectacle lens, a system for determining an improved design for a progressive spectacle lens, a non-transitory computer program and a progressive spectacle lens.
Abstract:
The current disclosure is directed to a method for determining an improved design for a progressive spectacle lens. Further, there are provided a method for manufacturing a progressive spectacle lens, a system for determining an improved design for a progressive spectacle lens, a non-transitory computer program and a progressive spectacle lens.
Abstract:
An article for performing a subjective refraction includes a lens having a mean power that varies across the lens in a first direction and a cylindrical power that varies across the lens in a second direction, orthogonal to the first direction, wherein the mean power varies by four diopters or more and the cylindrical power varies by four diopters or more.
Abstract:
An ophthalmic lens element (100) for correcting myopia in a wearer's eye is disclosed. The lens element (100) includes a central zone (102) and a peripheral zone (104). The central zone (102) provides a first optical correction for substantially correcting myopia associated with the foveal region of the wearer's eye. The peripheral zone (104) surrounds the central zone (102) and provides a second optical correction for substantially correcting myopia or hyperopia associated with a peripheral region of the retina of the wearer's eye. A system and method for dispensing or designing an ophthalmic lens element for correcting myopia in a wearer's eye is also disclosed.
Abstract:
The present invention relates to novel ophthalmic lens elements and eyewear having wide field of view, low distortion, improved astigmatism correction where required and enhanced eye protection properties. Series of lens elements have steeply curved spherical reference surfaces. The edged lenses of the series have approximately consistent aperture size, shape and hollow depth across a range of common prescriptions. Novel sunglasses, laser protective eyewear, and lens edgings, coatings and frames are included in the invention.
Abstract:
A method and apparatus for automatically measuring the circumference of a first region enclosed in a second region internal to a living organism, wherein the first and second regions consist of different cellular matter. One embodiment of the present invention includes generating a point inside an interior of the first region. A set of radial vectors are then generated, which emanate from the point in the interior of the first region. A path is then selected which intersects the set of radial vectors. The path is selected by identifying a distinguishable ultrasonic measurement along the respective radial vectors. A length of the selected path is then measured to generate the circumference of the first region.
Abstract:
A progressive addition lens contains a plurality of microlenses for providing simultaneous myopic defocus. The microlenses are superimposed on a power variation surface of the lens, which includes a designated distance portion in the upper section of the lens adapted for distance vision and a fitting cross; a designated near portion located in the lower section of the lens, the near portion including a near reference point having a near dioptric power adapted for near vision; and a designated intermediate corridor extending between the designated distance portion and near portions. Microlenses are excluded from all areas of the surface located below a notional line extending from nasal to temporal limits of the lens at a vertical coordinate above the near reference point where the vertical coordinate lies at a distance above the near reference point with the distance being in a range between 1.5 mm and 3 mm.
Abstract:
A progressive addition lens contains a plurality of microlenses for providing simultaneous myopic defocus. The microlenses are superimposed on a power variation surface of the lens, which includes a designated distance portion in the upper section of the lens adapted for distance vision and a fitting cross; a designated near portion located in the lower section of the lens, the near portion including a near reference point having a near dioptric power adapted for near vision; and a designated intermediate corridor extending between the designated distance portion and near portions. Microlenses are excluded from all areas of the surface located below a notional line extending from nasal to temporal limits of the lens at a vertical coordinate above the near reference point where the vertical coordinate lies at a distance above the near reference point with the distance being in a range between 1.5 mm and 3 mm.
Abstract:
An adjustable spectacle lens has a first lens element and a second lens element arranged one behind the other along an optical axis of the lens. The first and second lens element are configured to vary their combined optical properties when moved relative to each other in a direction transverse to the optical axis. The adjustable lens element is an adjustable progressive lens element. The first and second lens element are configured to vary at least one of a size and a power of the near, the distance, and the intermediate portion relative to each other, when the first lens element and the second lens element are moved relative to each other in the direction transverse to the optical axis. The first and second lens elements can be configured to conjointly provide a near, a distance and an intermediate portion that can be changed depending on the visual task.
Abstract:
A method, a system and a computer program for determining an eyeglass prescription for an eye are disclosed. Initially, information about a measurement indicative of the refractive properties of the eye is received. Subsequently, a mathematical representation of wavefront aberrations of the eye is determined from the measurement. The mathematical representation includes a multitude of polynomials, each polynomial having an azimuthal order and a radial order. Further, the mathematical representation includes at least a first polynomial group having a common radial order, wherein the common radial order is higher than two. The eyeglass prescription is determined based on a merit function, wherein each polynomial of the first polynomial group that is used in the merit function has an azimuthal order of −2, 0, or 2, respectively.