Abstract:
Techniques are provided to enable support of roaming wireless devices in a network such that the wireless devices can keep their Internet Protocol (IP) addresses as they roam across mobility sub-domains. Traffic for a wireless device that roams is tunneled back to the access switch that serves the IP subnet which includes an IP address for the wireless device. Traffic is tunneled back to that access switch for the wireless device when the wireless device roams to another access switch which does not serve the IP subnet for the wireless device in the same mobility sub-domain and when the wireless device roams to a different mobility sub-domain, in which case the traffic is tunneled between tunneling endpoints in the respective mobility sub-domains.
Abstract:
Techniques are provided to support roaming of wireless devices in a network such that the wireless devices can keep their Internet Protocol (IP) addresses as they roam within and across mobility sub-domains. When a wireless device roams from one access switch to another access switch, a tunneling endpoint apparatus in the wireless device's home mobility sub-domain is configured to serve as the point of presence for the roamed wireless device. Traffic for the roamed wireless device is tunneled from the access switch where the wireless device has roamed (where it is currently attached) to the tunneling endpoint apparatus. When the wireless device roams across mobility sub-domains, then traffic is tunneled from the access switch where the wireless device is currently attached to the tunneling endpoint apparatus in that mobility sub-domain (called a “foreign” mobility sub-domain) to the tunneling endpoint apparatus in the wireless device's home mobility sub-domain.
Abstract:
In one embodiment, a wireless access point receives a wireless advertisement frame having a source address field that indicates a reachable node being advertised, a destination address field that indicates a destination to which the reachable node is to be advertised, a transmitter address field that indicates a transmitting node from which the wireless advertisement frame is received, and a receiver address field that indicates the access point. The wireless access point then transmits a reflected wireless advertisement frame having a source address field that indicates the reachable node, a destination address field that indicates the destination, a transmitter address field that indicates the wireless access point, and a receiver address field that indicates both a plurality of receivers the reflected wireless advertisement frame is to be accepted by, and a node that is to be excluded from accepting the reflected wireless advertisement frame.
Abstract:
In one embodiment, a wireless access point receives a wireless advertisement frame having a source address field that indicates a reachable node being advertised, a destination address field that indicates a destination to which the reachable node is to be advertised, a transmitter address field that indicates a transmitting node from which the wireless advertisement frame is received, and a receiver address field that indicates the access point. The wireless access point then transmits a reflected wireless advertisement frame having a source address io field that indicates the reachable node, a destination address field that indicates the destination, a transmitter address field that indicates the wireless access point, and a receiver address field that indicates both a plurality of receivers the reflected wireless advertisement frame is to be accepted by, and a node that is to be excluded from accepting the reflected wireless advertisement frame.
Abstract:
In one embodiment, a method includes receiving a packet from a source wireless device at a second switch, the source wireless device previously associated with a first switch and roamed to and associated with the second switch, wherein a point of presence for the source wireless device is maintained at the first switch, inserting into the packet a direction indicator, and forwarding the packet from the second switch to the first switch, the direction indicator identifying the packet as being transmitted towards the point of presence for the source wireless device to prevent a forwarding loop. An apparatus is also disclosed.
Abstract:
Techniques are provided to enable support of roaming wireless devices in a network such that the wireless devices can keep their Internet Protocol (IP) addresses as they roam across mobility sub-domains. Traffic for a wireless device that roams is tunneled back to the access switch that serves the IP subnet which includes an IP address for the wireless device. Traffic is tunneled back to that access switch for the wireless device when the wireless device roams to another access switch which does not serve the IP subnet for the wireless device in the same mobility sub-domain and when the wireless device roams to a different mobility sub-domain, in which case the traffic is tunneled between tunneling endpoints in the respective mobility sub-domains.
Abstract:
Techniques are provided to manage how router advertisement messages are forwarded for ultimate wireless transmission in a wireless network. In one embodiment, a multicast router advertisement message intended for a virtual local area network is converted into individual unicast router advertisement messages directed to specific wireless mobile client devices that are part of that virtual local area network. In another embodiment, router advertisement messages are routed between controllers according to the current location of a wireless mobile client device. In still other embodiments, techniques are provided to minimize the volume of the router advertisement messages sent over a wireless network, and to proactively send a unicast router advertisement message to a mobile client device that has performed a handoff, without waiting for a router solicitation message.
Abstract:
Described in an example embodiment herein is a Mobility Service Engine (MSE) cluster comprising an MSE Cluster Master and at least one MSE Cluster Slave. The MSE Master is configured to define Network Service Segments. The MSE Master of the cluster distributes the Network Service Segments to slaves within the cluster. The network is configured to forward data to the correct Network Service Segment.
Abstract:
Described in an example embodiment herein is a Mobility Service Engine (MSE) cluster comprising an MSE Cluster Master and at least one MSE Cluster Slave. The MSE Master is configured to define Network Service Segments. The MSE Master of the cluster distributes the Network Service Segments to slaves within the cluster. The network is configured to forward data to the correct Network Service Segment.
Abstract:
Described herein are techniques that provide for the transmission of a multicast stream that can resend frames that were not received using the partial state block acknowledgement mechanism. In an example embodiment, an access point reserves a channel for a transmission opportunity of a sufficient length to allow the sending of multicast data, block acknowledgement request, and receipt of a block acknowledgement. Optionally, the transmission opportunity may be of sufficient length to enable packets that re resent to be sent during the transmission opportunity, thereby preventing other stations on the channel from gaining control of the channel. Alternatively the access point may employ an appropriate backoff between TXOPs to AP prevent (T)DLS traffic to the recipients of the multicast stream. The access point does not send any frames from other queues during the transmission opportunity.