Abstract:
Portable combination umbrella and tent and method of providing and making the same are disclosed. The umbrella has a frame, a handle, a first tier covering, and a second tier covering. The first tier covering and the second tier covering are coupled to the frame so that an overlapping area exists between the first tier covering and the second tier covering. A tent support is movably coupled to the frame. The tent support can be moved and adjusted in a number of tent positions and also stowed away as part of the umbrella. A tent covering is coupled to the umbrella. The tent support can support the tent covering in the tent positions. At least part of the tent covering can be folded up and stored in the overlapping area so that the portable umbrella and tent can be used as an umbrella.
Abstract:
A method for modeling a time-variant appearance of a material is described. A sample analysis of a material sample is performed, wherein the sample analysis orders surface points of the material sample with respect to weathering from data captured at a single instant in time. An appearance synthesis using the sample analysis is performed, wherein the appearance synthesis generates a time-variant sequence of frames for weathering an object.
Abstract:
A system and process for determining the vignetting function of an image and using the function to correct for the vignetting is presented. The image can be any arbitrary image and no other images are required. The system and process is designed to handle both textured and untextured segments in order to maximize the use of available information. To extract vignetting information from an image, segmentation techniques are employed that locate image segments with reliable data for vignetting estimation. Within each image segment, the system and process capitalizes on frequency characteristics and physical properties of vignetting to distinguish it from other sources of intensity variation. The vignetting data acquired from segments are weighted according to a presented reliability measure to promote robustness in estimation.
Abstract:
Techniques are provided for at least modeling any one of mesostructure shadowing, masking, interreflection and silhouettes on a surface, as well as subsurface scattering within a non-homogeneous volume. Such techniques include, at least, acquiring material parameters for a material sample, determining irradiance distribution values for the material sample, synthesizing the material sample onto a mesh of an object. The synthesized object may then be rendered by one of plural rendering techniques.
Abstract:
A “mesostructure renderer” uses pre-computed multi-dimensional “generalized displacement maps” (GDM) to provide real-time rendering of general non-height-field mesostructures on both open and closed surfaces of arbitrary geometry. In general, the GDM represents the distance to solid mesostructure along any ray cast from any point within a volumetric sample. Given the pre-computed GDM, the mesostructure renderer then computes mesostructure visibility jointly in object space and texture space, thereby enabling both control of texture distortion and efficient computation of texture coordinates and shadowing. Further, in one embodiment, the mesostructure renderer uses the GDM to render mesostructures with either local or global illumination as a per-pixel process using conventional computer graphics hardware to accelerate the real-time rendering of the mesostructures. Further acceleration of mesostructure rendering is achieved in another embodiment by automatically reducing the number of triangles in the rendering pipeline according to a user-specified threshold for acceptable texture distortion.
Abstract:
Portable combination umbrella and tent and method of providing and making the same are disclosed. The umbrella has a frame, a handle, a first tier covering, and a second tier covering. The first tier covering and the second tier covering are coupled to the frame so that an overlapping area exists between the first tier covering and the second tier covering. A tent support is movably coupled to the frame. The tent support can be moved and adjusted in a number of tent positions and also stowed away as part of the umbrella. A tent covering is coupled to the umbrella. The tent support can support the tent covering in the tent positions. At least part of the tent covering can be folded up and stored in the overlapping area so that the portable umbrella and tent can be used as an umbrella.
Abstract:
Removal of the effects of dust or other impurities on image data is described. In one example, a model of artifact formation from sensor dust is determined. From the model of artifact formation, contextual information in the image and a color consistency constraint may be applied on the dust to remove the dust artifacts. Artifacts may also be removed from multiple images from the same or different cameras or camera settings.
Abstract:
A radiometric calibration system finds an inverse response function of a camera from a single digital image of a scene in which the actual colors of the scene are not known a priori. The system analyzes pixels of the image that correspond to an “edge” between two colors of the scene. These “edge” pixels represent a blended color formed from these two “component” colors, as measured by the camera. The system determines an inverse response function at least in part by: (a) finding suitable edge pixels; and (b) determining a function that maps the measured blended colors of edge pixels and their measured component colors into linear distributions. Reference data that includes predetermined inverse response functions of known cameras can be used in determining an inverse response function via a Bayesian Estimation.
Abstract:
Techniques are described for rendering a volume of scattering media, in particular by computing radiances of points or voxels in the scattering media. A set of sample points in the scattering media are found. Radiances of the sample points are computed. Radiance gradients of the sample points are computed from the radiances. The radiances and gradients are used to interpolate radiances throughout the scattering media. The set of sample points may be computed in an iterative dynamic manner in order to concentrate samples near features (e.g., shadow edges) of the scattering media.