Abstract:
A single chain, polypeptide fusion protein, comprising: a non-cytotoxic protease, which protease is capable of cleaving a protein of the exocytic fusion apparatus of a nociceptive sensory afferent; a galanin Targeting Moiety that is capable of binding to a Binding Site on the nociceptive sensory afferent, which Binding Site is capable of undergoing endocytosis to be incorporated into an endosome within the nociceptive sensory afferent; a protease cleavage site at which site the fusion protein is cleavable by a protease, wherein the protease cleavage site is located between the non-cytotoxic protease and the galanin Targeting Moiety; a translocation domain that is capable of translocating the protease from within an endosome, across the endosomal membrane and into the cytosol of the nociceptive sensory afferent; a first spacer located between the non-cytotoxic protease and the protease cleavage site, wherein said first spacer comprises an amino acid sequence of from 4 to 25 amino acid residues; and a second spacer located between the galanin Targeting Moiety and the translocation domain, wherein said second spacer comprises an amino acid sequence of from 4 to 35 amino acid residues. Nucleic acid sequences encoding the polypeptide fusion proteins, methods of preparing same and uses thereof are also described.
Abstract:
The present invention relates to a transport protein which can be obtained by modifying the heavy chain of the neurotoxin formed by Clostridium botulinum wherein (i) the protein binds specifically to nerve cells with a higher or lower affinity as the native neurotoxin; (ii) the protein has an increased or reduced neurotoxicity compared to the native neurotoxin, the neurotoxicity being preferably determined in the hemidiaphragm assay; and/or (iii) the protein comprises a lower affinity against neutralizing antibodies compared to the native neurotoxin. The invention also relates to methods for producing the same and the use thereof in cosmetic and pharmaceutical compositions.
Abstract:
The present invention relates to a method for suppressing neuroendocrine disease. The therapy employs use of a non-cytotoxic protease, which is targeted to a neuroendocrine tumour cell, preferably via a somatostatin or cortistatin receptor, a GHRH receptor, a ghrelin receptor, a bombesin receptor, a urotensin receptor a melanin-concentrating hormone receptor 1; a KiSS-1 receptor or a prolactin-releasing peptide receptor. When so delivered, the protease is internalised and inhibits secretion from said tumour cell. The present invention also relates to polypeptides and nucleic acids for use in said methods.
Abstract:
The present invention relates to a method for suppressing or treating cancer, in particular to a method for suppressing or treating one or more of colorectal cancer, breast cancer, prostate cancer and/or lung cancer. The therapy employs use of a non-cytotoxic protease, which is targeted to a growth hormone-secreting cell such as to a pituitary cell. When so delivered, the protease is internalised and inhibits secretion/transmission of growth hormone from said cell. The present invention also relates to polypeptides and nucleic acids for use in said methods.
Abstract:
The present invention relates to the construction of a new class of Targeted Secretion Inhibitors (TSIs), which comprise a non-cytotoxic protease, translocation peptide and a targeting moiety peptide, wherein the targeting moiety peptide has a free N-terminal domain and a free C-terminal domain; to a single-chain fusion protein precursor thereof, and to a method of activating said single-chain fusion protein precursor.