摘要:
In a method and magnetic resonance apparatus to continuously correct phase errors in a magnetic resonance measurement sequence in which multiple sequentially radiated, multidimensional, spatially-selective radio-frequency excitation pulses are used, multiple calibration gradient echoes are acquired in a calibration acquisition sequence and a correction value for a phase response and a correction value for a phase difference are calculated from the multiple calibration gradient echoes. Furthermore, an additional radio-frequency excitation pulse is radiated takes into account the correction values.
摘要:
In a method and magnetic resonance system to correct phase errors in multidimensional, spatially selective radio-frequency excitation pulses in a pulse sequence used to operate the system to acquire magnetic resonance data, a multidimensional, spatially selective radio-frequency excitation pulse is radiated and multiple calibration gradient echoes are acquired. A phase correction and a time correction of the multidimensional, spatially selective radio-frequency excitation pulse is then calculated.
摘要:
In one embodiment a method for processing a reconstruction image is disclosed. The method includes recording the reconstruction image by a magnetic resonance device having a gradient coil to generate a gradient field. The method further includes distortion-correcting the reconstruction image. The method further includes back-transforming the distortion-corrected reconstruction image, by an image processing device, into a distortion-uncorrected reconstruction image, the back-transforming uses a first algorithm or a second algorithm including a second input value associated with the measurement signal, the second input value being a fictitious gradient field value associated with a distorted measuring point at which the measurement signal is processed, and the second input value is raised or lowered by a nonlinear field component of the real gradient field compared with a linear ideal gradient field.
摘要:
An arrangement for radiation of a radio-frequency field into an examination subject has a local coil unit with a housing. An insulating dielectric material is embodied at least at one part of the housing in order to passively compensate an inhomogeneity of the B1 field that occurs in the examination subject. An adjustment arrangement allows for fixed but detachable provision of the insulating dielectric material at the housing part.
摘要:
A magnetic resonance system obtaining magnetic resonance exposures of an examination subject, has an examination tunnel, a whole-body antenna with two connection terminals. The whole-body antenna cylindrically extends around the examination tunnel along a longitudinal axis. The system has a radio-frequency supply device in order to respectively supply the whole-body antenna with radio-frequency signals for emission of a radio-frequency field in the examination tunnel. The radio-frequency supply device has a radio-frequency generator for generation of a radio-frequency signal, a signal splitter that divides a radio-frequency signal coming from the radio-frequency generator into two partial signals that are phase-shifted by 90° relative to one another. Two radio-frequency feed lines are connected with the two connection terminals of the whole-body antenna. Via these radio-frequency feed lines, the two partial signals are fed into the whole-body antenna. The whole-body antenna has an intrinsic transmission characteristic such that a radio-frequency field is emitted that is elliptically polarized in a defined manner in a plane lying perpendicular to the longitudinal axis (at least in the unloaded state of the examination tunnel).
摘要:
A dielectric element for positioning on an examination subject for locally influencing the B1 field distribution during magnetic resonance data acquisition contains a relaxation agent bound to mutually separated particles. The relaxation agent incorporates a paramagnetic substance. In a corresponding method for acquiring magnetic resonance data from an examination subject, such a dielectric element is positioned on the examination subject for locally influencing the B1 field distribution, by homogenizing the B1 field of a magnetic resonance apparatus.
摘要:
A method for emitting a sequence of high frequency pulses that may have different envelopes in a magnetic resonance tomography system is provided. A digital instruction signal that specifies the envelope for the high frequency pulses that are to be emitted is received. A digital control signal is transmitted to a high frequency unit for generating high frequency pulses, depending on the instruction signal. A test signal that allows notification of a current overload situation is received. The current control signal is reduced if the test signal indicates an overload situation.
摘要:
In a method and magnetic resonance (MR) system to acquire MR data within a volume segment, the MR data are repeatedly acquired with a sequence that which includes the following steps. A first resonant RF pulse is radiated and a second resonant RF pulse is radiated. A dephasing first gradient is applied after the first resonant RF pulse and before the second resonant RF pulse. A third resonant RF pulse is radiated after the second resonant RF pulse. A second gradient is applied after the third RF pulse in order to refocus a stimulated echo of a magnetization component prepared by the first gradient. MR data are read out, and a fourth resonant RF pulse is radiated after the readout of the MR data, to reduce the longitudinal magnetization.
摘要:
In a method to acquire magnetic resonance (MR) data within a volume segment with a magnetic resonance system, the MR data are repeatedly acquired with a sequence that includes radiating a first resonant RF pulse, radiating a second resonant RF pulse, applying a dephasing first gradient after the first resonant RF pulse and before the second resonant RF pulse, radiating a third resonant RF pulse after the second resonant RF pulse, applying a second gradient after the third RF pulse in order to refocus a stimulated echo of a magnetization component prepared by the first gradient, and read out MR data. At least one of the first gradient and/or the second gradient is/are different in a respective repetition of the sequence and an additional repetition of the sequence that directly follows the respective repetition.