Abstract:
An automated system for sorting dissimilar materials, and in particular for sorting plastics from other materials and for sorting different types of plastics from one another comprises, depending upon the embodiment, combinations of a sizing mechanism, a friction separation, an air separator, a magnetic separator, a dielectric sensor sortation bed, shaker screening, a ballistic separator, an inductive sensor sortation system and a float/sink tank. The dielectric sensor sortation system may be either analog or digital, depending upon the particular implementation. One or more float/sink tanks can be used, depending upon the embodiment, each with a media of a different specific gravity. The media may be water, or water plus a compound such as calcium chloride. In addition, multiples of the same general type of module can be used for particular configurations. A heavy media system or a sand float process can be used either alternatively or additionally.
Abstract:
Recovering metallic materials, such as copper, from waste materials. The A dynamic sensor measures the rate of change of current generated by metallic materials in the waste materials. Preprocessing and post processing of the waste materials may be completed to further concentrate the amount the metallic materials recovered from the waste.
Abstract:
Processing metallic materials, such as copper, from waste materials. The systems and methods employ a dynamic sensor, which measures the rate of change of current generated by metallic objects that pass by the sensor to identify metallic objects in a waste stream. The dynamic sensor may be coupled to a computer system that controls a material diverter unit, which diverts the detected metallic objects for collection and possible further processing. The systems or methods may employ stages of sensors for sequential recovery of materials.
Abstract:
Processing recycled materials to recover plastics, copper wire, and other non-ferrous metals. Aspects of the invention employ density separation to separate plastic-bearing materials from copper-bearing materials. Plastic-bearing materials are further separated to separate light plastics from heavy plastics. Plastics are concentrated, extruded, and palletized. Copper and other valuable metals are recovered from copper-bearing materials using a water separation table.
Abstract:
A method for separating and recovering plastics from a waste stream including size separating the waste material, comminuting the material, and separating material at a specific density between 1.0 and 1.1 SG. Systems are included herein. PP and PE are separated from the waste stream
Abstract:
Systems and methods can sort materials of different specific gravities in a mixture. These systems and methods for separation of materials provide multiple forces simultaneously. The system can utilizes both vertical and the horizontal forces for efficient separation of materials with different specific gravities.
Abstract:
Systems and methods can sort materials of different specific gravities in a mixture. These systems and methods for separation of materials provide multiple forces simultaneously. The system can utilizes both vertical and the horizontal forces for efficient separation of materials with different specific gravities.
Abstract:
A system for recovering of metal and sand from incinerator ash material having an ash clarification assembly, a magnet to remove the ferrous from the heavy material; a sorting assembly, a drying cage or dewatering unit to dry the material; and a separation assembly to remove the aluminium from the material. Methods are included as well.
Abstract:
Devices, systems, and methods for separating waste stream with high glass concentrations to recover desired materials are described. The devices, systems, and methods may include a wet separator, a multi-stage screen(s), shredder(s), rising velocity separator(s)/jig(s), magnetic pulley(s), eddy current separator(s), and/or optical sorters.
Abstract:
A method includes one or more of the following five steps: (1) rough processing, (2) comminuting the material, (4) washing the material with acid, and (5) collecting/sorting the material to recover an aluminum product or a very pure aluminum product. A system may execute one or more of these steps to recover an aluminum product or a very pure aluminum product