Abstract:
A miniature recycle-type heat exchanger to produce recycle-type heat exchangers from high extensibility, high plasticity aluminum or copper billets (ingots) utilizing a pressure forming press to extrude lightweight, thin, and small form factor recycle-type heat exchangers. The production method includes annealing copper and aluminum billet (ingot) material, conveying the material to a vibrator for placement in an ordered arrangement, and then conveying and fixing the material onto molds in a pressure forming press for the extrusion tasks required to fabricate the heat exchanger bodies. In the final stage after shaping and determination of the fluid input direction, the bodies are placed in a vacuum sputtering machine to undergo a rough textured heat conductive microparticulate deposition process to complete the production of miniature recycle-type heat exchangers that are of very compact dimensions and lightweight, but have a large heat exchange capacity and, furthermore, a high heat transfer rate.
Abstract:
A method for manufacturing green-energy water, including: conducting water flow through a self-support visible-light photocatalytic reaction device, which decomposes the water into hydrogen ions and hydroxide ions; conducting the hydrogen ions and the hydroxide ions through an ion separation device, which separates the hydrogen ions and the hydroxide ions from each other; and conducting the separated hydroxide ions into an amount of water to form an amount of alkaline green-energy water and conducting the separated hydrogen ions into another amount of water to form an amount of acidulous green-energy water. The green-energy water manufactured in this way is environmentally friendly and can be used in cleaning purposes of photoelectric and semiconductor industries, processing of waste water, organic cultivation, organic agriculture, purification of water, sterilization of medical facility.
Abstract:
The present invention relates to a method of producing high-density polyidimide (HPI) films and its production equipment. The production equipment comprises a raw material supplying means, a vacuum cavity, an energy supplier, a clad laminator, and a baked solidified polymer. The foregoing components constitutes the production equipment, using the monomer with the CONH bond or copolymer as raw materials to extract the unsaturated C═N bond by heat, electrons, light, radiation rays or ions as energy under low-pressure environment, so that the H in vacuum can extract the non-solidified HPI film from the electronic radical covalent polymers and via heat or light to rearrange the structure into a solidified HPI film. By means of the method according to the present invention, the original HPI that is not easily to produce as a film can be easily made in form of a film of HPI polymer on the clad laminator.
Abstract:
A material composition with specific segment wavelength matching refractive index includes (a) resin or a composite thereof to serve as a bonding agent and (b) a medium material of metal oxides or complex metal oxides of specific particle size to serve as an additive for specific segment wavelength matching refractive index. The composition is formed by combining the bonding agent and additive. The composition material uses the wavelength of light emitting from a light-emitting diode (LED) die or excited from a fluorescent agent as the range of a segment to add nanometer particles of D=λ/4n optic thickness as basis for formation of an effective medium layer and thus providing a matching refractive index for wavelength of the specific segment bandwidth. Corresponding to different refractive indexes nx of LED die materials, proper amounts of nanometer particles are selectively added to have the refractive index match the LED die.