Abstract:
A modified mounting structure for a heat-dissipating device. The heat-dissipating device has a motor and a seat with a slot mounted on a base or the cover portion of a stator thereof. The seat secures a motor controller of the heat-dissipating device detecting phase changes of the magnetic poles of the motor. The structure of a heat-dissipating device reduces required components, manufacturing cost and assembly time, and the control circuit is greatly simplified.
Abstract:
A fan housing and a fan have stationary blades for guiding airflow. Each stationary blade has at least one airflow-guiding element extending therefrom along the circumference of the fan. The side wall of the airflow-guiding element changes the direction of the airflow so that the airflow at the outlet is fully introduced toward the heat source. Furthermore, the airflow-guiding element regulates the airflow, restrains the turbulent flow at the outlet and on the curved surface of the stationary blade, decreases the noise arising from the turbulent flow, and prevents foreign matter from entering the fan housing so as to protect the inside elements thereof.
Abstract:
A motor rotor. The motor rotor adapted to be used in a fan includes a hub, a metal plate and a magnet. The metal plate has a first end and a second end. The metal plate is disposed in the hub. The magnet is disposed in the metal plate. A method for manufacturing a motor rotor mentioned includes providing a metal plate having a first end and a second end; connecting the first and second ends to shape the metal plate as a ring; placing the metal plate in a hub; and placing a magnet in the metal plate.
Abstract:
A heat dissipation fan and a housing thereof. The heat dissipation fan includes a housing and a plurality of blades. The housing includes an outer frame, a base, and a plurality of air-guiding elements. The base is disposed in the outer frame, supporting the blades thereon. The air-guiding elements are disposed between the base and the outer frame, having a first curved surface, a second curved surface, and a bottom surface.
Abstract:
A centrifugal fan includes a hub and an impeller. The impeller is composed of a plurality of blades mounted around an outer circumference of the hub. The paraxial side of the blade forms a backward leaning structure, while the non-paraxial side thereof forms a forward leaning structure. A chamfer structure also can be formed at a paraxial side of each blade to enlarge the air inlet of the fan. Each blade further includes a protrusion, which is located at a side opposite to the inlet and extends toward a center of the hub, to increase the airflow rate through the fan motor. The centrifugal fan further includes an anti-decompression cap connected to an inlet side of the impeller to prevent an axial flow of the intake air from decompression.
Abstract:
A fan housing. The fan housing mounted on a frame of a system includes a main body, a first section, a second section and a fixing portion. Both the first and second sections are disposed on the main body. A gap is formed between the first and second sections. The fixing portion is formed in the gap.
Abstract:
A heat-dissipating module includes a heat sink and a fan device. The fan device may be disposed on the heat sink, or inserted into the heat sink to reduce the height. The fan device includes a first rotor blade and a second rotor blade. The first rotor blade and the second rotor blade are connected in series. The rotation speed of the first rotor blade is controlled by a first control circuit, and the second rotor blade is controlled by the second circuit. Thus, the second control circuit increases the rotation speed of the second rotor blades when the first rotor blades is failed.
Abstract:
A fan frame for encircling an impeller of a fan that includes a base and a plurality of teeth. A hole is formed on the base to form an inner periphery. The plurality of teeth is substantially perpendicular to, and mounted around the inner periphery for encircling the impeller of the fan. A plurality of clearances is formed between each one of the plurality of teeth and its adjacent tooth.
Abstract:
An engagement structure of a fan, which is engaged with a heat dissipation plate having a plurality of heat dissipation fins. A plurality of lower engagement portions with inverted-L-shapes is formed on the plurality of heat dissipation fins. A plurality of clearances substantially parallel to the plurality of heat dissipation fins is formed on each of the lower engagement portions. The engagement structure includes a fan frame and a plurality of upper engagement portions with L-shapes. The plurality of upper engagement portions is elastically mounted around the fan frame. Each of the upper engagement portions includes an L-shaped portion. A plurality of ribs is formed on the L-shaped portions. When assembling the engagement structure with the heat dissipation plate, the L-shaped portions are engaged with the lower engagement portions with inverted-L-shapes for mounting in a vertical direction, while the plurality of ribs are engaged with the plurality of clearances for mounting in a horizontal direction.