Abstract:
The present invention relates to a fiber distribution hub. The fiber distribution hub comprises a base case comprising at least one port portion for introducing an optical cable, wherein the optical cable includes a first fiber; a splitter case releasably attached to the base case; a splice tray rotatably hinged to the splitter case; and a cover engagable with the base case to enclose the splitter case and the splice tray. The first fiber is connected to a second fiber in the splice tray, and the second fiber is connected with a splitter in the splitter case to separate the second fiber into a plurality of separate third fibers. Thus, the invention provides a compact and modular fiber distribution hub. In addition, the fiber distribution hub can join optical fibers by mechanical splices, fusion splices and fiber optic connectors in a single unit.
Abstract:
Methods for forming nanoparticles under commercially attractive conditions. The nanoparticles can have very small size and high degree of monodispersity. Low temperature sintering is possible, and highly conductive films can be made. Semiconducting and electroluminescent films can be also made. One embodiment provides a method comprising: (a) providing a first mixture comprising at least one nanoparticle precursor and at least one first solvent for the nanoparticle precursor, wherein the nanoparticle precursor comprises a salt comprising a cation comprising a metal; (b) providing a second mixture comprising at least one reactive moiety reactive for the nanoparticle precursor and at least one second solvent for the reactive moiety, wherein the second solvent phase separates when it is mixed with the first solvent; and (c) combining said first and second mixtures in the presence of a surface stabilizing agent, wherein upon combination the first and second mixtures phase-separate and nanoparticles are formed.
Abstract:
A re-enterable enclosure for a cable splice includes a first cover member and a second cover member configured for engagement with each other, and movable between an open position and a closed position. The first and second cover members form a cavity for enclosing the cable splice when the cover members are in the closed position. Internal walls in at least one of the first and second cover members are configured to define a sealant containment space that at least partially surrounds the cavity. At least one latch is configured to maintain the first and second cover members in the closed position, the at least one latch configured to exert a compression force along a line extending through the sealant containment space.
Abstract:
A method of fabricating a device, comprising a ink or paste on a silicon based semiconductor material, wherein the ink or paste comprises a mixture of inorganic conductive and additive nanoparticles and wherein the semiconductor material is silicon. An example is a mixture of silver and palladium nanoparticles.
Abstract:
A method of implementing multimedia recording, comprises the following steps of: (1) establishing a multimedia channel between a media resource handling device and a recording data source; (2) a media resource controller including media controlling parameters, and indicating the media resource handling device to start a multimedia recording operation via said multimedia channel; (3) depending on the parameters indicated by the media resource controlling device, the media resource handling device saving the received media data as a multimedia data file according to a format indicated by the parameters. A system of implementing multimedia recording and media resource handling device. Using this method, system and the media resource handling device of present invention can make the media resource controller indicate the media resource handling device to implement the multimedia recording operation.
Abstract:
A process for separating different products from steelmaking slag includes reducing the average particle size of slag from a steelmaking process into fine particle size material, and separating the fine particle size material into at least an iron rich product and a silicate rich product based on the differences between these products in at least one or more properties including magnetic susceptibility, particle size or specific gravity.
Abstract:
The present invention relates to a fiber optic telecommunication cabinet for use in fiber optic telecommunication networks. The fiber optic telecommunication cabinet comprises a base and a housing. The housing defines an internal cavity from an open first end that extends longitudinally to a closed second end. The base is configured for attachment to the open first end of the housing to provide an enclosed configuration. The base has a plurality of ports passing through the base to allow passage telecommunication cables into the fiber optic cabinet. A center support column extends from the base from the base. The fiber optic cabinet includes a plurality of patch panel frames disposed radially around the center support column and a patch cord management plate attached to the center support column above the plurality of patch panel frames.
Abstract:
A method, apparatus, and system for updating video data are disclosed herein. The first method disclosed herein includes: the MP receives an indication from the MC, detects the video quality of the video source, and requests the video data to be updated from the MC according to the detection result. The second method includes: the MP receives an indication sent by the MC and performs detection; and requests video data to be updated from the MC after detecting an in-band video data update request sent by a video source. The third method includes: the MP sends an in-band video data update request to the video source specified by the indication according to the indication sent by the MC, requesting to update the video data specified by the indication. Through the present invention, the MP requests the video data that needs to be updated from the MC.