Abstract:
A light control film and display assemblies that includes such a film. The light control film including a substrate defining first and second major surfaces with the first major surface including a plurality louvers spanning in a first direction substantially perpendicular to a normal of the first major surface, and with the second major surface comprises a plurality of linear microstructures spanning in the first direction. In some examples, each louver of the plurality of louvers substantially aligns with a corresponding microstructure of the plurality of microstructures.
Abstract:
Optical systems are disclosed. More particularly, optical systems including an asymmetric turning film (110) with at least a first (120) and second light source (130) are disclosed. Selection of geometries for the asymmetric turning film can enable different output viewing angles depending on the selective illumination of the first light source, the second light source, or both. The optical systems disclosed may be suitable in both luminaires and displays.
Abstract:
An electronically switchable privacy films suitable for use in display devices are described. The electronically switchable privacy film comprises a pair of mutually opposing transparent electrodes; an optically transparent microstructured layer disposed between the transparent electrodes, the microstructured layer comprising a plurality of microstructured ribs extending across a surface thereof such that the microstructured ribs form an alternating series of ribs and channels; and electronically switchable material disposed in the channels, the electronically switchable material being capable of modulation between high and low absorption states upon application of an electric field across the transparent electrodes.
Abstract:
The present disclosure provides a light control film that is capable of transmitting light, or allowing a viewer to observe information, only within a viewing region centered around the normal (perpendicular line) to a surface. The light control film generally blocks information or light outside of this viewing region, and provides security in all directions including right-and-left and up-and-down of the film. The light control film includes a plurality of light-transmissive cavities that are surrounded by a light absorbing material, such that each of the plurality of cavities is optically isolated from adjacent cavities. Each of the light-transmissive cavities effectively block light which enters the cavity outside of a viewing (that is, cutoff) angle.
Abstract:
The disclosure describes asymmetric turning films (ATFs) that may be used in conjunction with multiple light sources in a liquid crystal display assembly to provide multiple different characteristic output distributions of light. In some examples, the ATFs include a structured surface defining a plurality of microstructures having two or more faces with each face configured to reflect light in different directions. The microstructure may define a microstructure axis and an angle gradient characterizing the rotation of the microstructure axis across the structured surface of the ATF.
Abstract:
Dual-sided optical films have extended split spreading structures formed on one major surface, and extended prisms formed on an opposite major surface. One portion of each split spreading structure has a low light spreading characteristic, and another portion has a high light spreading characteristic. For each split spreading structure, the low light spreading portion may be disposed alongside the high light spreading portion. The split spreading structures may be arranged in a one-to-one correspondence with the prisms. Light that enters a given prism from one inclined surface thereof can be associated primarily with light transmitted through the low light spreading portion of the split spreading structure, and light that enters the given prism from the other inclined surface thereof can be associated primarily with light transmitted through the high light spreading portion.
Abstract:
Dual-sided optical films have extended split spreading structures formed on one major surface, and extended prisms formed on an opposite major surface. One portion of each split spreading structure has a low light spreading characteristic, and another portion has a high light spreading characteristic. For each split spreading structure, the low light spreading portion may be disposed alongside the high light spreading portion. The split spreading structures may be arranged in a one-to-one correspondence with the prisms. Light that enters a given prism from one inclined surface thereof can be associated primarily with light transmitted through the low light spreading portion of the split spreading structure, and light that enters the given prism from the other inclined surface thereof can be associated primarily with light transmitted through the high light spreading portion.
Abstract:
An electronically switchable privacy films suitable for use in display devices are described. The electronically switchable privacy film comprises a pair of mutually opposing transparent electrodes; an optically transparent microstructured layer disposed between the transparent electrodes, the microstructured layer comprising a plurality of microstructured ribs extending across a surface thereof such that the microstructured ribs form an alternating series of ribs and channels; and electronically switchable material disposed in the channels, the electronically switchable material being capable of modulation between high and low absorption states upon application of an electric field across the transparent electrodes.
Abstract:
The present invention generally relates to a film stack having a light-control film, such as a privacy filter, and a p-polarization color shifting film. The present invention also relates to articles, such as displays, incorporating the same.