Abstract:
Different candidate windows in an image are identified, such as by sliding a rectangular or other geometric shape of different sizes over an image to identify portions of the image (groups of pixels in the image). The candidate windows are analyzed by a set of convolutional neural networks, which are cascaded so that the input of one convolutional neural network layer is based on the input of another convolutional neural network layer. Each convolutional neural network layer drops or rejects one or more candidate windows that the convolutional neural network layer determines does not include an object (e.g., a face). The candidate windows that are identified as including an object (e.g., a face) are analyzed by another one of the convolutional neural network layers. The candidate windows identified by the last of the convolutional neural network layers are the indications of the objects (e.g., faces) in the image.
Abstract:
Image classification techniques using images with separate grayscale and color channels are described. In one or more implementations, an image classification network includes grayscale filters and color filters which are separate from the grayscale filters. The grayscale filters are configured to extract grayscale features from a grayscale channel of an image, and the color filters are configured to extract color features from a color channel of the image. The extracted grayscale features and color features are used to identify an object in the image, and the image is classified based on the identified object.
Abstract:
Each of multiple images is analyzed to determine how the colors of the pixels of the image are distributed throughout the color space of the image. Different covariance based characteristics of the image are determined that identify a direction, as well as magnitude in each direction, of the distribution of colors of the image pixels. These different covariance based characteristics that are determined for an image can be saved as associated with the image, allowing the characteristics to be accessed and used as a basis for searching the images to identify particular types of images. These different covariance based characteristics can also be used to order the images identified by a search.
Abstract:
Semantic class localization techniques and systems are described. In one or more implementation, a technique is employed to back communicate relevancies of aggregations back through layers of a neural network. Through use of these relevancies, activation relevancy maps are created that describe relevancy of portions of the image to the classification of the image as corresponding to a semantic class. In this way, the semantic class is localized to portions of the image. This may be performed through communication of positive and not negative relevancies, use of contrastive attention maps to different between semantic classes and even within a same semantic class through use of a self-contrastive technique.
Abstract:
Image search techniques and systems involving emotions are described. In one or more implementations, a digital medium environment of a content sharing service is described for image search result configuration and control based on a search request that indicates an emotion. The search request is received that includes one or more keywords and specifies an emotion. Images are located that are available for licensing by matching one or more tags associated with the image with the one or more keywords and as corresponding to the emotion. The emotion of the images is identified using one or more models that are trained using machine learning based at least in part on training images having tagged emotions. Output is controlled of a search result having one or more representations of the images that are selectable to license respective images from the content sharing service.
Abstract:
Content creation and sharing integration techniques and systems are described. In one or more implementations, techniques are described in which modifiable versions of content (e.g., images) are created and shared via a content sharing service such that image creation functionality used to create the images is preserved to permit continued creation using this functionality. In one or more additional implementations, image creation functionality employed by a creative professional to create content is leveraged to locate similar images from a content sharing service.
Abstract:
A convolutional neural network is trained to analyze input data in various different manners. The convolutional neural network includes multiple layers, one of which is a convolution layer that performs a convolution, for each of one or more filters in the convolution layer, of the filter over the input data. The convolution includes generation of an inner product based on the filter and the input data. Both the filter of the convolution layer and the input data are binarized, allowing the inner product to be computed using particular operations that are typically faster than multiplication of floating point values. The possible results for the convolution layer can optionally be pre-computed and stored in a look-up table. Thus, during operation of the convolutional neural network, rather than performing the convolution on the input data, the pre-computed result can be obtained from the look-up table.
Abstract:
Feature interpolation techniques are described. In a training stage, features are extracted from a collection of training images and quantized into visual words. Spatial configurations of the visual words in the training images are determined and stored in a spatial configuration database. In an object detection stage, a portion of features of an image are extracted from the image and quantized into visual words. Then, a remaining portion of the features of the image are interpolated using the visual words and the spatial configurations of visual words stored in the spatial configuration database.
Abstract:
Cascaded object detection techniques are described. In one or more implementations, cascaded coarse-to-dense object detection techniques are utilized to detect objects in images. In a first stage, coarse features are extracted from an image, and non-object regions are rejected. Then, in one or more subsequent stages, dense features are extracted from the remaining non-rejected regions of the image to detect one or more objects in the image.
Abstract:
Various embodiments of methods and apparatus for feature point localization are disclosed. A profile model and a shape model may be applied to an object in an image to determine locations of feature points for each object component. Input may be received to move one of the feature points to a fixed location. Other ones of the feature points may be automatically adjusted to different locations based on the moved feature point.