Abstract:
A color palette for an image is obtained, which is a set of different colors that are determined to be the dominant colors in the image. The color palette can be displayed to a user, and a user input in the form of an adverbial expression to change the color palette is received. The adverbial expression can indicate various different changes to the color palette, such as more or less of a particular color, making a color brighter or darker, making all colors in the color palette shallower or deeper, increasing or reducing the contrast of colors in the color palette, and so forth. The adverbial expression can be transformed into a new color palette and a color based image search can be initiated to identify images based on the colors in the new color palette, or an image can be modified based on the adverbial expression.
Abstract:
Each of multiple images is analyzed to determine how the colors of the pixels of the image are distributed throughout the color space of the image. Different covariance based characteristics of the image are determined that identify a direction, as well as magnitude in each direction, of the distribution of colors of the image pixels. These different covariance based characteristics that are determined for an image can be saved as associated with the image, allowing the characteristics to be accessed and used as a basis for searching the images to identify particular types of images. These different covariance based characteristics can also be used to order the images identified by a search.
Abstract:
Various embodiments describe audio signal processing. In an example, a computer system generates metrics, such as RMS levels, for audio slices from a foreground audio signal. A summed-area table is generated from the metrics. An observation window is used to determine whether to add a key frame or not. The observation window includes a set of audio slices. A total metrics, such as an average RMS level, is computed for the audio slices in the observation window. Based on the total metric, the computer system adds a key frame. The key frame references audio ducking parameters applicable to a background audio signal.
Abstract:
Methods and apparatus are presented for a morphing search tool that provides a single user interface through which a user may both modify a displayed image and perform an image similarity query based on the modified image. The morphing search tool may allow a user to repeat this process until a desired image is found and displayed. Further, the image repository to be searched may be specified by a user and the images to be modified and searched for may be any type of image. The morphing search tool may be integrated within a merchant website, an image management system, or as a stand alone application.
Abstract:
A color palette for an image is obtained, which is a set of different colors that are determined to be the dominant colors in the image. The color palette can be displayed to a user, and a user input in the form of an adverbial expression to change the color palette is received. The adverbial expression can indicate various different changes to the color palette, such as more or less of a particular color, making a color brighter or darker, making all colors in the color palette shallower or deeper, increasing or reducing the contrast of colors in the color palette, and so forth. The adverbial expression can be transformed into a new color palette and a color based image search can be initiated to identify images based on the colors in the new color palette, or an image can be modified based on the adverbial expression.
Abstract:
Methods and apparatus are presented for a morphing search tool that provides a single user interface through which a user may both modify a displayed image and perform an image similarity query based on the modified image. The morphing search tool may allow a user to repeat this process until a desired image is found and displayed. Further, the image repository to be searched may be specified by a user and the images to be modified and searched for may be any type of image. The morphing search tool may be integrated within a merchant website, an image management system, or as a stand alone application.
Abstract:
Audio loudness adjustment techniques are described. In one or more implementations, primary and secondary sound data originating as part of an audio signal is adjusted. For example, a loudness of the sound data is adjusted. To do so, the loudness, which indicates a sound intensity of the primary and secondary sound data, is determined. Adjustments are then computed for at least a portion of the audio signal based on a target dynamic range parameter, which defines a desired difference between the loudness of the primary and secondary sound data respectively. Based on the computed adjustments, a variety of actions may be performed, such as applying the adjustments to the audio signal to generate an adjusted audio signal in which the primary and secondary sound data substantially have the desired loudness difference. Further, a preview of the adjusted audio signal may be updated in real-time for display in a user interface.
Abstract:
Each of multiple images is analyzed to determine how the colors of the pixels of the image are distributed throughout the color space of the image. Different covariance based characteristics of the image are determined that identify a direction, as well as magnitude in each direction, of the distribution of colors of the image pixels. These different covariance based characteristics that are determined for an image can be saved as associated with the image, allowing the characteristics to be accessed and used as a basis for searching the images to identify particular types of images. These different covariance based characteristics can also be used to order the images identified by a search.