Abstract:
A first and second head-end terminal and at least one optical add/drop filter device are connected to form a transmission path. Each head-end terminal is connected through an optical fiber to a western or eastern WDM port of an adjacent optical add/drop filter device, and each optical add/drop filter device is connected, at an eastern or western WDM port, to a western or eastern WDM port of an adjacent optical add/drop filter device. At least one tail-end terminal is connected to each optical add/drop filter device, wherein a first and second channel port of the respective add/drop tail-end terminal is connected to a dedicated first and second channel port of the optical add/drop filter device through a respective optical fiber. The head-end terminals, the optical add/drop filter devices, and the tail-end terminals are adapted to establish bidirectional communication between each tail-end terminal and the first and second head-end terminal.
Abstract:
A method for bi-directionally transmitting digital optical signals over an optical transmission link in which a first optical transmit signal is created according to a first binary digital signal in such a way that the bit information of the first binary digital signal is included in first sections of the symbol interval of the first optical transmit signal. A second optical transmit signal is created by creating an optical wavelength reuse signal using the first optical transmit signal received at the second end of the optical transmission link, the optical wavelength reuse signal being modulated according to a second digital signal in such a way that the bit information of the second digital signal is included in second sections of the symbol interval of the first optical transmit signal received.
Abstract:
A life cycle network management system for performing life cycle management of distributed network devices, each network device comprising a communication link to a central network management unit and an attached transponder configured to store life cycle data of the network device updated by said network device, wherein if the communication link between the network device and the central network management unit is at least temporarily unavailable the updated life cycle data of the network device stored in the attached transponder is read by an interrogation unit of the life cycle network management system and processed to provide a life cycle management result.
Abstract:
A method for tuning a tunable optical transmitter to a target wavelength includes applying at least one tuning signal to the tunable optical transmitter to control the tunable optical transmitter to create an optical calibration signal according to nominal tuning information for the tunable optical transmitter. The optical calibration signal has a wavelength lying within a secure wavelength range, and the nominal tuning information is based on a nominal wavelength dependency for the tunable optical transmitter. The method also includes measuring a deviation between an actual wavelength dependency of the tunable optical transmitter and the nominal wavelength dependency, and determining calibration information based on that deviation. The calibration information is applied to determine a corrected nominal wavelength dependency from which target tuning information is determined. The tunable optical transmitter is controlled to create an optical channel signal according to the target tuning information.
Abstract:
The invention relates to an optical network element, particularly an optical line terminal, OLT, for transmitting and receiving signals wire an optical network that comprises at least one optical fiber link and at least one further optical network element. The optical network element provides a primary optical pumping mean for emitting optical pump power to set at least one optical fiber link. The emitted optical pump power forms at least one gain medium outside the optical network element to provide optical pump power to the network for amplifying the singles to receive so that outside of the domain of the optical network element no electrical energy supply is needed.
Abstract:
A passive optical network comprises at least two optical line terminals (OLTs), a remote node (RN), and a plurality of optical node units (ONUs). Each OLT has a WDM working port, the RN has a number M WDM ports and a number N distribution ports, and each ONU has a communication port. Each OLT WDM working port is connected to a dedicated RN WDM port by a respective working feeder fiber, and each ONU communication port is connected to a dedicated RN distribution port by a respective distribution fiber. The RN comprises a passive optical filter device having a spectral and spatial filter property of an M×N arrayed waveguide grating and defining the M WDM ports and the N distribution ports. Each OLT communicates to a respective ONU using optical channel signals at a downstream wavelength defined by the passive optical filter device making up the RN.
Abstract:
The invention relates to a method of operating a primary optical node, particularly an optical line terminal (OLT), for an optical communications system, wherein said OLT is configured to receive at least one upstream optical signal (uos) from at least one secondary optical node, particularly an optical networking unit (ONU), within at least a first wavelength range (wr1), and to transmit at least one downstream optical signal (dos) to said at least one ONU within at least a second wavelength range (wr2), wherein said OLT determines a currently unused wavelength subrange (wsr2) within said first wavelength range (wr1), assigns a specific target wavelength (λt) within said currently unused wavelength subrange (wsr2) to said ONU, signals said target wavelength (λt) to said ONU, receives an upstream signal (us) from said ONU, and provides feedback information to said ONU.
Abstract:
A transparent optical overlay network (1) for providing end-to-end optical spectrum services over multiple transparent optical network domains (2) is described. The transparent optical overlay network (1) includes network domain interface devices, NDIDs, (3) provided at domain boundaries between adjacent transparent optical network domains (2). The network domain interface device, NDID (3), monitors and adjusts incoming optical signals received by the NDID (3) from a first transparent optical network domain (2-1) and monitors and adjusts outgoing optical signals output by the NDID (3) to an adjacent second transparent optical network domain (2-2). An overlay network controller (5) manages and controls the end-to-end optical spectrum services by controlling the NDIDs (3). The overlay network controller collects telemetry data (TDATA) for optical spectrum service characterization and SLA policing of the optical spectrum services.
Abstract:
An apparatus adapted to perform spectrometric measurements, said apparatus comprising a tunable laser light source adapted to generate a laser light with an excitation wavelength supplied to an optical sensor which produces a sample specific response light signal; an optical reference filter adapted to measure laser light with the excitation wavelength fed back as a reference signal to provide wavelength calibration of the tunable laser light source; at least one optical measurement filter adapted to measure the sample specific response light signal produced by the optical sensor, wherein the optical reference filter and the at least one optical measurement filter are thermally coupled to maintain a constant wavelength relationship between the filter characteristics of the optical filters.
Abstract:
The invention relates to an optical WDM transmission network including at least one optical line terminal, a remote node and a plurality of optical network units. The at least one optical line terminal is connected to the optical remote node via an optical WDM path. Each optical network unit is connected to the optical remote node via an optical distribution path.