Abstract:
A low-cost process is provided to render lignocellulosic biomass accessible to cellulase enzymes, to produce fermentable sugars. Some variations provide a process to produce ethanol from lignocellulosic biomass (such as sugarcane bagasse or corn stover), comprising introducing a lignocellulosic biomass feedstock to a single-stage digestor; exposing the feedstock to a reaction solution comprising steam or liquid hot water within the digestor, to solubilize the hemicellulose in a liquid phase and to provide a cellulose-rich solid phase; refining the cellulose-rich solid phase, together with the liquid phase, in a mechanical refiner, thereby providing a mixture of refined cellulose-rich solids and the liquid phase; enzymatically hydrolyzing the mixture in a hydrolysis reactor with cellulase enzymes, to generate fermentable sugars; and fermenting the fermentable sugars to produce ethanol. Many alternative process configurations are described. The disclosed processes may be employed for other fermentation products.
Abstract:
The invention provides a continuous process for enzymatic hydrolysis of pretreated biomass, the process comprising: providing a pretreated lignocellulosic biomass feed material containing cellulose; introducing the pretreated lignocellulosic biomass feed material to a mechanical-treatment unit containing one or more decompression regions configured to release pressure; introducing a liquid solution containing cellulase enzymes to one or more decompression regions in the mechanical-treatment unit, wherein the liquid solution enters void spaces between fibers of the pretreated lignocellulosic biomass feed material, to form enzyme-containing cellulose-rich solids; and retaining the enzyme-containing cellulose-rich solids under effective hydrolysis conditions to hydrolyze at least some of the cellulose to glucose. Various apparatus configurations are disclosed for the mechanical-treatment unit.
Abstract:
The disclosure provides a process for separating fermentation inhibitors from a biomass-derived hydrolysate, comprising: introducing a biomass-derived liquid hydrolysate stream to a stripping column; introducing a steam-rich vapor stream to the stripping column to strip fermentation inhibitors (such as acetic acid) from the liquid hydrolysate stream; recovering a stripped liquid stream and a stripper vapor output stream; compressing the stripper vapor output stream; introducing the compressed vapor stream, and a water-rich liquid stream, to an evaporator; recovering, from the evaporator, an evaporated liquid stream and an evaporator output vapor stream; and recycling the evaporator output vapor stream to the stripping column as the steam-rich vapor stream. Other variations utilize a rectification column to recover a rectified liquid stream and a rectification column vapor stream, and recycle the rectification column vapor stream to the stripping column as the steam-rich vapor stream.