Abstract:
An acoustic module, such as a microphone or speaker module, includes an acoustic membrane that vibrates to produce acoustic waves and an acoustic cavity through which acoustic waves produced by the membrane travel. A liquid removal mechanism removes liquid from the acoustic cavity. Such a liquid removal mechanism may include the acoustic membrane, heating elements, hydrophobic and/or hydrophilic surfaces, and so on. In some cases, the liquid removal mechanism may remove liquid from the acoustic cavity upon connection of the acoustic module and/or an associated electronic device to an external power source.
Abstract:
An audio speaker having a speaker housing surrounding a back volume that is divided into a rear cavity behind a speaker driver and an adsorption cavity separated from the rear cavity by a permeable partition, is disclosed. More particularly, the adsorption cavity may be defined between the speaker housing and the permeable partition, and may be directly filled with adsorptive particles to adsorb gas during sound generation. The permeable partition may allow the gas to flow between the rear cavity and the adsorption cavity, and may retain the adsorptive particles within the adsorption cavity. Other embodiments are also described and claimed.
Abstract:
An audio speaker having an adsorptive insert in a speaker back volume, is disclosed. More particularly, an embodiment includes an adsorptive insert having a rigid open-pore body formed by bonded adsorptive particles. The rigid open-pore body includes interconnected macropores that transport air from the speaker back volume to adsorptive micropores in the bonded adsorptive particles during sound generation. Other embodiments are also described and claimed.
Abstract:
A micro-speaker assembly including an enclosure having an enclosure wall separating a surrounding environment from an encased space, wherein the enclosure wall defines an acoustic port from the encased space to the surrounding environment; a sound radiating surface positioned within the encased space and dividing the encased space into a front volume chamber and a back volume chamber, wherein the front volume chamber is acoustically coupled to a first surface of the sound radiating surface and the acoustic port, and the back volume chamber acoustically coupled to a second surface of the sound radiating surface; and a resonator acoustically coupled to the front volume chamber, wherein the resonator comprises a neck acoustically coupled to an acoustic cavity, and an opening to the neck is positioned at a distance from the acoustic port that corresponds to a quarter wavelength resonance of the front volume chamber.
Abstract:
A micro speaker assembly including a speaker enclosure having an enclosure wall separating a surrounding environment from an encased space, wherein the enclosure wall defines, in part, an acoustic channel that acoustically couples the encased space to the surrounding environment, and the enclosure wall comprises a chemically etched insert molded metal portion that is mechanically interlocked and hermetically sealed to a plastic portion. The micro speaker further including a speaker assembly positioned within the encased space, the speaker assembly having a sound radiating surface facing the metal portion of the enclosure wall, a voice coil extending from the sound radiating surface, a magnet assembly having a magnetic gap aligned with the voice coil, and an acoustic chamber formed, in part, by the metal portion of the enclosure wall and the sound radiating surface.
Abstract:
An audio speaker having a suspension system including a surround to support a diaphragm within a frame and to reduce non-pistonic motion of the diaphragm at several resonant frequencies is disclosed. More particularly, embodiments of the surround include a film that undulates in a peripheral direction around the diaphragm and includes several undulations above and below a radial gap between the diaphragm and the frame. Other embodiments are also described and claimed.
Abstract:
A speaker assembly including a frame and a magnet assembly positioned within the frame. The magnet assembly may include a magnet and a top plate. The assembly further including a sound radiating surface suspended over the magnet assembly. The sound radiating surface includes a flexible circuit. A suspension suspending the sound radiating surface over the magnet assembly is further provided. The suspension may be over molded to the sound radiating surface and the frame. A voice coil extends from a bottom side of the sound radiating surface and electrically connects to the flexible circuit.
Abstract:
An audio speaker having a speaker housing surrounding a back volume that is divided into a rear cavity behind a speaker driver and an adsorption cavity separated from the rear cavity by a permeable partition, is disclosed. More particularly, the adsorption cavity may be defined between the speaker housing and the permeable partition, and may be directly filled with adsorptive particles to adsorb gas during sound generation. The permeable partition may allow the gas to flow between the rear cavity and the adsorption cavity, and may retain the adsorptive particles within the adsorption cavity. Other embodiments are also described and claimed.
Abstract:
Embodiments of the invention include a micro speaker assembly that has two drivers, each having a separate yoke, set of magnets, voice coil, and acoustic diaphragms. One driver may produce high frequency (HF) sound while the other produces low frequency (LF) sound. The two drivers may be packaged, side-by-side, within the same micro speaker acoustic enclosure. The drivers may have their respective magnet systems physically connected to each other, in order to enhance heat transfer from one to the other. In particular, a thermally conductive portion or bridge may be used to directly join or thermally connect adjacent edges of the yoke portions of the two magnet systems, in order to enhance heat transfer between the first and second micro speaker drivers. Thus, the assembly can handle more power without overheating. Other embodiments are also described and claimed.
Abstract:
An electro-acoustic transducer has an acoustic diaphragm and a voice-coil. The diaphragm defines a first major surface. A flange extends from the diaphragm in a direction opposite the first major surface. The voice-coil has a first plurality of windings positioned adjacent to the acoustic diaphragm and a second plurality of windings positioned distally from the acoustic diaphragm. The flange overlaps the first plurality of windings. The flange and the windings can be adhesively bonded with each other to form a lap joint. The lap joint can transfer force from the voice-coil to the diaphragm.