Abstract:
Acoustic touch detection (touch sensing) system architectures and methods can be used to detect an object touching a surface. Position of an object touching a surface can be determined using time-of-flight (TOF) bounding box techniques, or acoustic image reconstruction techniques. Acoustic touch sensing can utilize transducers, such as piezoelectric transducers, to transmit ultrasonic waves along a surface and/or through the thickness of an electronic device. Location of the object can be determined, for example, based on the amount of time elapsing between the transmission of the wave and the detection of the reflected wave. An object in contact with the surface can interact with the transmitted wave causing attenuation, redirection and/or reflection of at least a portion of the transmitted wave. Portions of the transmitted wave energy after interaction with the object can be measured to determine the touch location of the object on the surface of the device.
Abstract:
An electronic device may include a display layer including light transmissive portions and non-transmissive portions. The electronic device may also include a palm biometric image sensor layer beneath the display layer and configured to sense an image of a user's palm positioned above the display layer based upon light reflected from the user's palm passing through the light transmissive portions of the display layer. The electronic device may further include a controller configured to capture image data from the user's palm in cooperation with the palm biometric image sensor layer and determine a surface distortion of the user's palm based upon the image data. The controller may also be configured to perform a biometric authentication of the user's palm based upon the image data and the surface distortion.
Abstract:
Acoustic touch and/or force sensing system architectures and methods for acoustic touch and/or force sensing can be used to detect a position of an object touching a surface and an amount of force applied to the surface by the object. The position and/or an applied force can be determined using time-of-flight (TOF) techniques, for example. Acoustic touch sensing can utilize transducers (e.g., piezoelectric) to simultaneously transmit ultrasonic waves along a surface and through a thickness of a deformable material. The location of the object and the applied force can be determined based on the amount of time elapsing between the transmission of the waves and receipt of the reflected waves. In some examples, an acoustic touch sensing system can be insensitive to water contact on the device surface, and thus acoustic touch sensing can be used for touch sensing in devices that may become wet or fully submerged in water.
Abstract:
The present disclosure relates to one or more intermediate layers located on a surface of a cover material of an acoustic touch screen. In some examples, the one or more layers can include one or more intermediate layers. The one or more intermediate layers can include a first layer including a plurality of features and a second layer located between the first layer and the cover material. In a touch condition, the touch object can apply a force to the top surface of the acoustic touch sensor. The applied force can create one or more local bends causing the plurality of features to move closer to the cover material and causing one or more surface discontinuities in the cover material. The acoustic waves can undergo reflections (e.g., causing the signal to be attenuated) due to the discontinuities located in the path of the wave propagation.
Abstract:
Acoustic touch and/or force sensing system architectures and methods for acoustic touch and/or force sensing can be used to detect a position of an object touching a surface and an amount of force applied to the surface by the object. The position and/or an applied force can be determined using time-of-flight (TOF) techniques, for example. Acoustic touch sensing can utilize transducers (e.g., piezoelectric) to simultaneously transmit ultrasonic waves along a surface and through a thickness of a deformable material. The location of the object and the applied force can be determined based on the amount of time elapsing between the transmission of the waves and receipt of the reflected waves. In some examples, an acoustic touch sensing system can be insensitive to water contact on the device surface, and thus acoustic touch sensing can be used for touch sensing in devices that may become wet or fully submerged in water.
Abstract:
An electronic device may include an optical image sensor and a pin hole array mask layer above the optical image sensor. The electronic device may also include a display layer above the pin hole array mask layer that includes spaced apart display pixels, and at least one light source laterally adjacent the optical image sensor and capable of directing light into a user's finger when adjacent the optical image sensor.
Abstract:
An electronic device may include a housing, a display carried by the housing and switchable between a power saving mode and an operating power mode, and a finger biometric sensor carried by the housing and configured to sense an image of an object adjacent thereto. The electronic device may also include a device cover carried by the housing and configured to be movable between an open position exposing the finger biometric sensor and a closed position covering the finger biometric sensor. The device cover may include a cover panel and an electrically conductive member carried by the cover panel adjacent the finger biometric sensor when in the closed position. A controller may be coupled to the finger biometric sensor and configured to determine when the electrically conductive member is adjacent the finger biometric sensor, and selectively switch the display between the power saving mode and the operating power mode based thereon.
Abstract:
A finger biometric sensing device may include an array of finger biometric sensing pixel electrodes and a gain stage coupled to the array of finger biometric sensing pixel electrodes. The finger biometric sensing device may also include error compensation circuitry that may include a memory capable of storing error compensation data. The error correction circuitry may also include a digital-to-analog converter (DAC) cooperating with the memory and coupled to the gain stage and capable of compensating for at least one error based upon the stored error compensation data.