Abstract:
An electronic device may include an optical image sensor and a pin hole array mask layer above the optical image sensor. The electronic device may also include a display layer above the pin hole array mask layer that includes spaced apart display pixels, and a transparent cover layer above the display layer defining a finger placement surface capable of receiving a finger adjacent thereto.
Abstract:
An electronic device may include a dielectric cover layer defining a finger sensing surface and at least one optical image sensor below the dielectric cover layer. The electronic device may also include at least one optical element associated with the at least one optical image sensor. Light sources may be below the dielectric layer and may be selectively operable in subsets of light sources. A controller may be configured to sequentially operate respective adjacent subsets of light sources while acquiring biometric image data from the at least one optical image sensor.
Abstract:
A biometric sensing system includes discrete ultrasonic transducers, a first electrode layer disposed over a first surface of the discrete ultrasonic transducers, and a second electrode layer disposed over a second surface of the discrete ultrasonic transducers. The first electrode layer may be a sheet of conductive material that is a common ground connection for the discrete ultrasonic transducers. Alternatively, the first electrode layer can be formed with discrete electrode elements, with a discrete electrode element disposed over the first surface of a discrete ultrasonic transducer. The second electrode layer may be formed with discrete electrode elements, with a discrete electrode element disposed over the second surface of one ultrasonic transducer. At least one integrated circuit can be attached and connected to one of the electrode layers. The integrated circuit includes drive circuits and sense circuits for the discrete ultrasonic transducers.
Abstract:
An acoustic fingerprint imaging system having a plurality of acoustic elements, each acoustic element including a transducer, and independent drive and sense circuitry is disclosed. Drive circuitry may require higher voltage than low voltage sense circuitry. Many embodiments described herein include a ground shifting controller to apply a voltage bias to the low voltage sense circuitry during a drive operation, in order to prevent electrical damage to the sense circuitry.
Abstract:
An electronic device may include a housing and circuitry carried by the housing and having a device ground associated therewith. The electronic device may also include an array of biometric finger sensing pixel electrodes and an array shielding electrode outside the array of biometric finger sensing pixels. A finger coupling electrode may be outside the array shielding electrode and coupled to the device ground. The electronic device may also include drive circuitry capable of generating a drive signal for the array of biometric finger sensing pixel electrodes and a compensating drive signal for the array shielding electrode.
Abstract:
An acoustic imaging system coupled to an acoustic medium to define an imaging surface. The acoustic imaging system includes an array of piezoelectric acoustic transducers formed at least in part from a thin-film piezoelectric material, such as PVDF. The array is coupled to the acoustic medium opposite the imaging surface and formed using a thin-film manufacturing process over an application-specific integrated circuit that, in turn, is configured to leverage on or more beamforming scan operations to drive the array of piezoelectric actuators to generate an image of an object at least partially wetting to the imaging surface.
Abstract:
An elongated biometric device provides a slim solution for capturing biometric data, and may be placed on a portion of an electronic device having limited space, such as a side of the electronic device. The elongated biometric device may include a force sensor, which may be positioned within a housing of the electronic device and actuated through posts extending from the elongated biometric device through the housing to transfer an applied force to the force sensor.
Abstract:
An electronic device may have an optical touch sensor that is insensitive to the presence of moisture. The display may present images through a display cover layer. A light source may illuminate an external object such as a user's finger when the object contacts a surface of the display cover layer. This creates scattered light that may be detected by an array of light sensors. A metasurface grating may be used to couple light from the light source into the display cover layer at an angle such that total internal reflection within the display cover layer is sustained across the display cover layer even when the display cover layer is immersed in water or otherwise exposed to moisture. Additional metasurface gratings may be formed on the display cover layer to redirect light propagating within the display cover layer away from edges that might otherwise defeat total internal reflection.
Abstract:
An acoustic imaging system coupled to an acoustic medium to define an imaging surface. The acoustic imaging system includes an array of piezoelectric acoustic transducers formed at least in part from a thin-film piezoelectric material, such as PVDF. The array is coupled to the acoustic medium opposite the imaging surface and formed using a thin-film manufacturing process over an application-specific integrated circuit that, in turn, is configured to leverage on or more beamforming scan operations to drive the array of piezoelectric actuators to generate an image of an object at least partially wetting to the imaging surface.
Abstract:
Systems and methods for through-display imaging. An optical imaging sensor is positioned at least partially behind a display and is configured to emit shortwave infrared light at least partially through the display to illuminate an object, such as a fingerprint, in contact with an outer surface of the display. Surface reflections from the object are received and an image of the object can be assembled.