Abstract:
A capacitive sensing device can include multiple capacitive sensors. A first device controller is operatively connected to a portion of the capacitive sensors, while a second device controller is operatively connected to another portion of capacitive sensors. A common node or shield can be connected between the first device controller and the second device controller. Charging and discharging events of selected drive lines in the capacitive sensing device and/or of the common node or shield can be synchronized to reduce undesirable effects such as noise and/or to prevent the charging events and the discharging events from overlapping with each other. One or more reference capacitive sensors can be shared by the multiple device controllers.
Abstract:
A capacitive sensing device can include multiple capacitive sensors. A first device controller is operatively connected to a portion of the capacitive sensors, while a second device controller is operatively connected to another portion of capacitive sensors. A common node or shield can be connected between the first device controller and the second device controller. Charging and discharging events of selected drive lines in the capacitive sensing device and/or of the common node or shield can be synchronized to reduce undesirable effects such as noise and/or to prevent the charging events and the discharging events from overlapping with each other. One or more reference capacitive sensors can be shared by the multiple device controllers.
Abstract:
A capacitive sensing device can include multiple capacitive sensors. A first device controller is operatively connected to a portion of the capacitive sensors, while a second device controller is operatively connected to another portion of capacitive sensors. A common node or shield can be connected between the first device controller and the second device controller. Charging and discharging events of selected drive lines in the capacitive sensing device and/or of the common node or shield can be synchronized to reduce undesirable effects such as noise and/or to prevent the charging events and the discharging events from overlapping with each other. One or more reference capacitive sensors can be shared by the multiple device controllers.
Abstract:
A device configured to determine the location and magnitude of a touch on a surface of the device. The device includes a transparent touch sensor that is configured to detect a location of a touch on the transparent touch sensor. The device also includes a force-sensing structure disposed at the periphery of the transparent touch sensor. The force sensor includes an upper capacitive plate and a compressible element disposed on one side of the upper capacitive plate. The force sensor also includes a lower capacitive plate disposed on a side of the compressible element that is opposite the upper capacitive plate.
Abstract:
A capacitive force sensor characterization system for calibrating a capacitive force sensor included in a personal electronic device. The capacitive force sensor includes a first capacitor plate coupled to a flexible element of the personal electronic device, which is coupled to the device housing, and a second capacitor plate coupled to an internal structural member of the personal electronic device. The internal structural member is not coupled to the housing during the characterization. The capacitive force sensor characterization system includes: a housing fixture adapted to hold the housing of the personal electronic device; a member fixture adapted to hold the internal structural member of the personal electronic device; a positioner coupled to at least one of the housing fixture or the member fixture; a position sensor; control circuitry electrically coupled to the positioner to provide a drive signal to the positioner; and a processor coupled to the first and second capacitor plates and the position sensor. The positioner is adapted to vary the gap width between the first and second capacitor plates in response to the drive signal. The position sensor is adapted to measure differences in the gap width between the capacitor plates relative to an initial gap width. The control circuitry is adapted to generate the drive signal following a test procedure such that, in response to the drive signal, the positioner varies the gap width between the capacitor plates from the initial gap width to at least two test gap widths. The processor adapted to determine: a capacitive sensor gain; a capacitive sensor offset; and an initial effective separation between the capacitor plates.
Abstract:
Systems and methods related to piezoelectric based force sensing in touch devices are presented. One embodiment, for example, may take the form of an apparatus including a touch device having a deformable device stack and a piezoelectric element positioned relative to the deformable device stack such that the piezoelectric element deforms with the deformable stack. Deformation of the piezoelectric element generates a signal having a magnitude discernable as representative of an amount of force applied to the touch device.
Abstract:
A capacitive force sensor characterization system for calibrating a capacitive force sensor included in a personal electronic device. The capacitive force sensor includes a first capacitor plate coupled to a flexible element of the personal electronic device, which is coupled to the device housing, and a second capacitor plate coupled to an internal structural member of the personal electronic device. The internal structural member is not coupled to the housing during the characterization. The capacitive force sensor characterization system includes: a housing fixture adapted to hold the housing of the personal electronic device; a member fixture adapted to hold the internal structural member of the personal electronic device; a positioner coupled to at least one of the housing fixture or the member fixture; a position sensor; control circuitry electrically coupled to the positioner to provide a drive signal to the positioner; and a processor coupled to the first and second capacitor plates and the position sensor. The positioner is adapted to vary the gap width between the first and second capacitor plates in response to the drive signal. The position sensor is adapted to measure differences in the gap width between the capacitor plates relative to an initial gap width. The control circuitry is adapted to generate the drive signal following a test procedure such that, in response to the drive signal, the positioner varies the gap width between the capacitor plates from the initial gap width to at least two test gap widths. The processor adapted to determine: a capacitive sensor gain; a capacitive sensor offset; and an initial effective separation between the capacitor plates.
Abstract:
Detecting force and touch using FTIR and capacitive location. FTIR determines applied force by the user's finger within infrared transmit lines on a touch device. A pattern of such lines determine optical coupling with the touch device. Capacitive sensing can determine (A) where the finger actually touches, so the touch device more accurately infers applied force; (B) whether finger touches shadow each other; (C) as a baseline for applied force; or (D) whether attenuated reflection is due to a current optical coupling, or is due to an earlier optical coupling, such as a smudge on the cover glass. If there is attenuated reflection without actual touching, the touch device can reset a baseline for applied force for the area in which that smudge remains. Infrared transmitters and receivers are positioned where they are not visible to a user, such as below a frame or mask for the cover glass.
Abstract:
A force-sensitive device for electronic device. The force inputs may be detected by measuring changes in capacitance, as measured by surface flex of a device having a flexible touchable surface, causing flex at a compressible gap within the device. A capacitive sensor responsive to changes in distance across the compressible gap. The sensor can be positioned above or below, or within, a display element, and above or below, or within, a backlight unit. The device can respond to bending, twisting, or other deformation, to adjust those zero force measurements. The device can use measure of surface flux that appear at positions on the surface not directly the subject of applied force, such as when the user presses on a part of the frame or a surface without capacitive sensors.
Abstract:
A method of calibrating a force sensor that includes an input surface and an array of sensing elements. The input has a number of test locations and is deformable under applied force. The force sensor is mounted in a predetermined test orientation. For each test location of the plurality of test locations on the input surface of the force sensor a predetermined test force to the test location. An element calibration value is measured for each sensing element of the array of sensing elements of the force sensor. An (x, y) deformation map of the input surface of the force sensor corresponding to the application of the predetermined test force to the test location is determined based on the measured element calibration values.