Abstract:
A touch sensor panel having co-planar single-layer touch sensors fabricated on a single side of a substrate is disclosed. The drive and sense lines can be fabricated as column-like patterns in a first orientation and patches in a second orientation, where each column-like pattern in the first orientation is connected to a separate metal trace in the border area of the touch sensor panel, and all patches in each of multiple rows in the second orientation are connected together using a separate metal trace in the border area of the touch sensor panel. The metal traces in the border areas can be formed on the same side of the substrate as the patches and columns, but separated from the patches and column-like patterns by a dielectric layer.
Abstract:
A touch surface device having improved sensitivity and dynamic range is disclosed. In one embodiment, the touch surface device includes a touch-sensitive panel having at least one sense node for providing an output signal indicative of a touch or no-touch condition on the panel; a compensation circuit, coupled to the at least one sense node, for generating a compensation signal that when summed with the output signal removes an undesired portion of the output signal so as to generated a compensated output signal; and an amplifier having an inverting input coupled to the output of the compensation circuit and a non-inverting input coupled to a known reference voltage.
Abstract:
A touch screen including display pixels with capacitive elements is provided. The touch screen includes first common voltage lines connecting capacitive elements in adjacent display pixels, and a second common voltage line connecting first common voltage lines. The pixels can be formed as electrically separated regions by including breaks in the common voltage lines. The regions can include a drive region that is stimulated by stimulation signals, a sense region that receives sense signals corresponding to the stimulation signals. A grounded region can also be included, for example, between a sense region and a drive region. A shield layer can be formed of a substantially high resistance material and disposed to shield a sense region. A black mask line and conductive line under the black mask line can be included, for example, to provide low-resistance paths between a region of pixels and touch circuitry outside the touch screen borders.
Abstract:
Pre-stored no-touch or no-hover (no-event) sensor output values can initially be used when a sensor panel subsystem is first booted up to establish an initial baseline of sensor output values unaffected by fingers or other objects touching or hovering over the sensor panel during boot-up. This initial baseline can then be normalized so that each sensor generates the same output value for a given amount of touch or hover, providing a uniform response across the sensor panel and enabling subsequent touch or hover events to be more easily detected. After the initial normalization process is complete, the pre-stored baseline can be discarded in favor of a newly captured no-event baseline that may be more accurate than the pre-stored baseline due to temperature or other variations.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
Abstract:
A touch surface device having improved sensitivity and dynamic range is disclosed. In one embodiment, the touch surface device includes a touch-sensitive panel having at least one sense node for providing an output signal indicative of a touch or no-touch condition on the panel; a compensation circuit, coupled to the at least one sense node, for generating a compensation signal that when summed with the output signal removes an undesired portion of the output signal so as to generated a compensated output signal; and an amplifier having an inverting input coupled to the output of the compensation circuit and a non-inverting input coupled to a known reference voltage.
Abstract:
Pre-stored no-touch or no-hover (no-event) sensor output values can initially be used when a sensor panel subsystem is first booted up to establish an initial baseline of sensor output values unaffected by fingers or other objects touching or hovering over the sensor panel during boot-up. This initial baseline can then be normalized so that each sensor generates the same output value for a given amount of touch or hover, providing a uniform response across the sensor panel and enabling subsequent touch or hover events to be more easily detected. After the initial normalization process is complete, the pre-stored baseline can be discarded in favor of a newly captured no-event baseline that may be more accurate than the pre-stored baseline due to temperature or other variations.
Abstract:
The use of multiple stimulation signals having one or more frequencies and one or more phases to generate an image of touch on a touch sensor panel is disclosed. Each of a plurality of sense channels can be coupled to a column in a touch sensor panel and can have one or more mixers. Each mixer in the sense channel can utilize a circuit capable generating a demodulation frequency of a particular frequency. At each of multiple steps, various phases of one or more selected frequencies can be used to simultaneously stimulate the rows of the touch sensor panel, and the one or more mixers in each sense channel can be configured to demodulate the signal received from the column connected to each sense channel using the one or more selected frequencies. After all steps have been completed, the demodulated signals from the one or more mixers can be used in calculations to determine an image of touch for the touch sensor panel at each of the one or more frequencies.
Abstract:
Pre-stored no-touch or no-hover (no-event) sensor output values can initially be used when a sensor panel subsystem is first booted up to establish an initial baseline of sensor output values unaffected by fingers or other objects touching or hovering over the sensor panel during boot-up. This initial baseline can then be normalized so that each sensor generates the same output value for a given amount of touch or hover, providing a uniform response across the sensor panel and enabling subsequent touch or hover events to be more easily detected. After the initial normalization process is complete, the pre-stored baseline can be discarded in favor of a newly captured no-event baseline that may be more accurate than the pre-stored baseline due to temperature or other variations.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.