Abstract:
In an example, an apparatus includes a memory storing a hypervisor, where the hypervisor is configured to determine whether one or more universal serial bus (USB) devices in communication with the hypervisor are authorized to communicate with a guest operating system of the hypervisor and, after determining that the one or more USB devices are authorized to communicate with the guest, virtualize the one or more USB devices at the guest operating system and transfer messages between the one or more USB devices and the virtualized USB device.
Abstract:
In an example, an apparatus includes a memory storing a hypervisor, where the hypervisor is configured to determine whether one or more universal serial bus (USB) devices in communication with the hypervisor are authorized to communicate with a guest operating system of the hypervisor and, after determining that the one or more USB devices are authorized to communicate with the guest, virtualize the one or more USB devices at the guest operating system and transfer messages between the one or more USB devices and the virtualized USB device.
Abstract:
This disclosure provides example techniques to invoke one or more tools, with an investigative tool. The investigative tool provides a common framework that allows investigators to invoke their own trusted tools or third-party generated tools. The investigative tool described herein seamlessly and transparently invokes the tools in accordance with an investigative profile created by the investigator.
Abstract:
An example method includes storing a scenario event list that defines one or more events associated with a training exercise, and configuring, based on the events defined in the scenario event list, one or more software agents to emulate one or more cyber-attacks against a host computing system during the training exercise, which includes configuring the software agents to save a state of one or more resources of the host computing system prior to emulating the cyber-attacks and to restore the state of the resources upon conclusion of the cyber-attacks. The example method further includes deploying the software agents for execution on the host computing system during the training exercise to emulate the cyber-attacks against the host computing system using one or more operational networks.
Abstract:
An example method includes storing a scenario event list that defines one or more events associated with a training exercise, and configuring, based on the events defined in the scenario event list, one or more software agents to emulate one or more cyber-attacks against a host computing system during the training exercise, which includes configuring the software agents to save a state of one or more resources of the host computing system prior to emulating the cyber-attacks and to restore the state of the resources upon conclusion of the cyber-attacks. The example method further includes deploying the software agents for execution on the host computing system during the training exercise to emulate the cyber-attacks against the host computing system using one or more operational networks.
Abstract:
An example method includes outputting a graphical dashboard that includes one or more learning objective nodes and one or more skill nodes, selecting one or more software agents that are associated with the one or more skill nodes, providing, to at least one host computing system, an indication of the one or more software agents that are configured to collect parameter data from the at least one host computing system while a trainee performs actions, receiving the parameter data collected by the one or more software agents during execution, determining, based on the parameter data, that the one or more skills represented by the one or more skill nodes have been demonstrated by the trainee, and updating the one or more skill nodes to graphically indicate that one or more represented skills have been demonstrated.
Abstract:
This disclosure generally relates to automated execution and evaluation of computer network training exercises, such as in a virtual machine environment. An example environment includes a control and monitoring system, an attack system, and a target system. The control and monitoring system initiates a training scenario to cause the attack system to engage in an attack against the target system. The target system then performs an action in response to the attack. Monitor information associated with the attack against the target system is collected by continuously monitoring the training scenario. The attack system is then capable of sending dynamic response data to the target system, wherein the dynamic response data is generated according to the collected monitor information to adapt the training scenario to the action performed by the target system. The control and monitoring system then generates an automated evaluation based upon the collected monitor information.
Abstract:
This disclosure generally relates to automated execution and evaluation of computer network training exercises, such as in a virtual machine environment. An example environment includes a control and monitoring system, an attack system, and a target system. The control and monitoring system initiates a training scenario to cause the attack system to engage in an attack against the target system. The target system then performs an action in response to the attack. Monitor information associated with the attack against the target system is collected by continuously monitoring the training scenario. The attack system is then capable of sending dynamic response data to the target system, wherein the dynamic response data is generated according to the collected monitor information to adapt the training scenario to the action performed by the target system. The control and monitoring system then generates an automated evaluation based upon the collected monitor information.